二部图上ESA的显定义抽样范畴

Mateusz Ozga, J. Szymański
{"title":"二部图上ESA的显定义抽样范畴","authors":"Mateusz Ozga, J. Szymański","doi":"10.1109/HSI49210.2020.9142653","DOIUrl":null,"url":null,"abstract":"This paper presents a study of extensions of the Explicit Semantic Analysis (ESA) used for text representation. The standard ESA algorithm leads to allocation of blocks of words in $(\\mathcal{O} \\vert V_2\\vert \\times n)$ time on average, where n is the size of the words in text corpora being the subject of analysis and $\\vert V_2\\vert$ stands for the size of the vocabulary. Proposed extensions have been based on the selection of training data for ESA and employs for that purpose the category structure of Wikipedia called CESA. The paper proposes the metrics for evaluation of the quality and test the performance of the methods in the function of the training data size. We also study the influence of these methods on the quality of the representation. We established that the total number of queries in case of training is $(\\mathcal{O} \\vert D \\subseteq V_2\\vert \\times n)$. Furthermore, the CESA method leads to allocation of blocks of words in $\\mathcal{O} (\\vert V_{1} \\times V_{2} \\vert \\times n)$ time on average, and $\\mathcal{O} (\\vert V_{1} \\times V_{2} \\vert \\times n)$ time on worse case.","PeriodicalId":371828,"journal":{"name":"2020 13th International Conference on Human System Interaction (HSI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicitly Defined Sampling Categories for ESA on a Bipartite Graph\",\"authors\":\"Mateusz Ozga, J. Szymański\",\"doi\":\"10.1109/HSI49210.2020.9142653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study of extensions of the Explicit Semantic Analysis (ESA) used for text representation. The standard ESA algorithm leads to allocation of blocks of words in $(\\\\mathcal{O} \\\\vert V_2\\\\vert \\\\times n)$ time on average, where n is the size of the words in text corpora being the subject of analysis and $\\\\vert V_2\\\\vert$ stands for the size of the vocabulary. Proposed extensions have been based on the selection of training data for ESA and employs for that purpose the category structure of Wikipedia called CESA. The paper proposes the metrics for evaluation of the quality and test the performance of the methods in the function of the training data size. We also study the influence of these methods on the quality of the representation. We established that the total number of queries in case of training is $(\\\\mathcal{O} \\\\vert D \\\\subseteq V_2\\\\vert \\\\times n)$. Furthermore, the CESA method leads to allocation of blocks of words in $\\\\mathcal{O} (\\\\vert V_{1} \\\\times V_{2} \\\\vert \\\\times n)$ time on average, and $\\\\mathcal{O} (\\\\vert V_{1} \\\\times V_{2} \\\\vert \\\\times n)$ time on worse case.\",\"PeriodicalId\":371828,\"journal\":{\"name\":\"2020 13th International Conference on Human System Interaction (HSI)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Conference on Human System Interaction (HSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI49210.2020.9142653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference on Human System Interaction (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI49210.2020.9142653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了用于文本表示的显式语义分析(ESA)的扩展。标准的ESA算法导致平均在$(\mathcal{O} \vert V_2\vert \times n)$ time中分配单词块,其中n是文本语料库中作为分析主题的单词的大小,$\vert V_2\vert$表示词汇表的大小。提议的扩展是基于为ESA选择的训练数据,并为此目的采用了维基百科的类别结构,称为CESA。本文提出了评价方法质量的指标,并在训练数据大小的函数中测试了方法的性能。我们还研究了这些方法对表示质量的影响。我们确定在训练情况下的查询总数为$(\mathcal{O} \vert D \subseteq V_2\vert \times n)$。此外,CESA方法导致单词块的分配平均为$\mathcal{O} (\vert V_{1} \乘以V_{2} \vert \乘以n)$ time,在最坏的情况下为$\mathcal{O} (\vert V_{1} \乘以V_{2} \vert \乘以n)$ time。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicitly Defined Sampling Categories for ESA on a Bipartite Graph
This paper presents a study of extensions of the Explicit Semantic Analysis (ESA) used for text representation. The standard ESA algorithm leads to allocation of blocks of words in $(\mathcal{O} \vert V_2\vert \times n)$ time on average, where n is the size of the words in text corpora being the subject of analysis and $\vert V_2\vert$ stands for the size of the vocabulary. Proposed extensions have been based on the selection of training data for ESA and employs for that purpose the category structure of Wikipedia called CESA. The paper proposes the metrics for evaluation of the quality and test the performance of the methods in the function of the training data size. We also study the influence of these methods on the quality of the representation. We established that the total number of queries in case of training is $(\mathcal{O} \vert D \subseteq V_2\vert \times n)$. Furthermore, the CESA method leads to allocation of blocks of words in $\mathcal{O} (\vert V_{1} \times V_{2} \vert \times n)$ time on average, and $\mathcal{O} (\vert V_{1} \times V_{2} \vert \times n)$ time on worse case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信