{"title":"随机规划的确定性和基于抽样的顺序边界相结合的方法","authors":"Péguy Pierre-Louis, G. Bayraksan, D. Morton","doi":"10.1109/WSC.2011.6148105","DOIUrl":null,"url":null,"abstract":"We develop an algorithm for two-stage stochastic programming with a convex second stage program and with uncertainty in the right-hand side. The algorithm draws on techniques from bounding and approximation methods as well as sampling-based approaches. In particular, we sequentially refine a partition of the support of the random vector and, through Jensen's inequality, generate deterministically valid lower bounds on the optimal objective function value. An upper bound estimator is formed through a stratified Monte Carlo sampling procedure that includes the use of a control variate variance reduction scheme. The algorithm lends itself to a stopping rule theory that ensures an asymptotically valid confidence interval for the quality of the proposed solution. Computational results illustrate our approach.","PeriodicalId":246140,"journal":{"name":"Proceedings of the 2011 Winter Simulation Conference (WSC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A combined deterministic and sampling-based sequential bounding method for stochastic programming\",\"authors\":\"Péguy Pierre-Louis, G. Bayraksan, D. Morton\",\"doi\":\"10.1109/WSC.2011.6148105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an algorithm for two-stage stochastic programming with a convex second stage program and with uncertainty in the right-hand side. The algorithm draws on techniques from bounding and approximation methods as well as sampling-based approaches. In particular, we sequentially refine a partition of the support of the random vector and, through Jensen's inequality, generate deterministically valid lower bounds on the optimal objective function value. An upper bound estimator is formed through a stratified Monte Carlo sampling procedure that includes the use of a control variate variance reduction scheme. The algorithm lends itself to a stopping rule theory that ensures an asymptotically valid confidence interval for the quality of the proposed solution. Computational results illustrate our approach.\",\"PeriodicalId\":246140,\"journal\":{\"name\":\"Proceedings of the 2011 Winter Simulation Conference (WSC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2011.6148105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2011.6148105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A combined deterministic and sampling-based sequential bounding method for stochastic programming
We develop an algorithm for two-stage stochastic programming with a convex second stage program and with uncertainty in the right-hand side. The algorithm draws on techniques from bounding and approximation methods as well as sampling-based approaches. In particular, we sequentially refine a partition of the support of the random vector and, through Jensen's inequality, generate deterministically valid lower bounds on the optimal objective function value. An upper bound estimator is formed through a stratified Monte Carlo sampling procedure that includes the use of a control variate variance reduction scheme. The algorithm lends itself to a stopping rule theory that ensures an asymptotically valid confidence interval for the quality of the proposed solution. Computational results illustrate our approach.