随机规划的确定性和基于抽样的顺序边界相结合的方法

Péguy Pierre-Louis, G. Bayraksan, D. Morton
{"title":"随机规划的确定性和基于抽样的顺序边界相结合的方法","authors":"Péguy Pierre-Louis, G. Bayraksan, D. Morton","doi":"10.1109/WSC.2011.6148105","DOIUrl":null,"url":null,"abstract":"We develop an algorithm for two-stage stochastic programming with a convex second stage program and with uncertainty in the right-hand side. The algorithm draws on techniques from bounding and approximation methods as well as sampling-based approaches. In particular, we sequentially refine a partition of the support of the random vector and, through Jensen's inequality, generate deterministically valid lower bounds on the optimal objective function value. An upper bound estimator is formed through a stratified Monte Carlo sampling procedure that includes the use of a control variate variance reduction scheme. The algorithm lends itself to a stopping rule theory that ensures an asymptotically valid confidence interval for the quality of the proposed solution. Computational results illustrate our approach.","PeriodicalId":246140,"journal":{"name":"Proceedings of the 2011 Winter Simulation Conference (WSC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A combined deterministic and sampling-based sequential bounding method for stochastic programming\",\"authors\":\"Péguy Pierre-Louis, G. Bayraksan, D. Morton\",\"doi\":\"10.1109/WSC.2011.6148105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an algorithm for two-stage stochastic programming with a convex second stage program and with uncertainty in the right-hand side. The algorithm draws on techniques from bounding and approximation methods as well as sampling-based approaches. In particular, we sequentially refine a partition of the support of the random vector and, through Jensen's inequality, generate deterministically valid lower bounds on the optimal objective function value. An upper bound estimator is formed through a stratified Monte Carlo sampling procedure that includes the use of a control variate variance reduction scheme. The algorithm lends itself to a stopping rule theory that ensures an asymptotically valid confidence interval for the quality of the proposed solution. Computational results illustrate our approach.\",\"PeriodicalId\":246140,\"journal\":{\"name\":\"Proceedings of the 2011 Winter Simulation Conference (WSC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2011.6148105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2011.6148105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种具有凸第二阶段规划和右侧不确定性的两阶段随机规划算法。该算法借鉴了边界和近似方法以及基于抽样的方法。特别地,我们依次细化随机向量的支持度划分,并通过Jensen不等式生成最优目标函数值的确定性有效下界。上界估计量是通过分层蒙特卡罗采样过程形成的,其中包括使用控制变量方差缩减方案。该算法适合于一个停止规则理论,该理论保证了所提出的解的质量有一个渐近有效的置信区间。计算结果说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A combined deterministic and sampling-based sequential bounding method for stochastic programming
We develop an algorithm for two-stage stochastic programming with a convex second stage program and with uncertainty in the right-hand side. The algorithm draws on techniques from bounding and approximation methods as well as sampling-based approaches. In particular, we sequentially refine a partition of the support of the random vector and, through Jensen's inequality, generate deterministically valid lower bounds on the optimal objective function value. An upper bound estimator is formed through a stratified Monte Carlo sampling procedure that includes the use of a control variate variance reduction scheme. The algorithm lends itself to a stopping rule theory that ensures an asymptotically valid confidence interval for the quality of the proposed solution. Computational results illustrate our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信