{"title":"用于大直径砷化镓晶圆的新型RTA技术,可最大限度地减少掺杂扩散和滑移形成","authors":"T. Sakurada, M. Kiyama, S. Nakajima, M. Tatsumi","doi":"10.1109/ICIPRM.2001.929149","DOIUrl":null,"url":null,"abstract":"Rapid thermal annealing (RTA) is useful for shallow channel device fabrication because of suppression of dopant diffusion. However, short RTA sequence easily causes slip formation due to thermal stress during the process, which is more serious in the case of larger diameter wafers. We investigated at what point slip generated during RTA by monitoring temperature distribution within a wafer and successfully suppress slip formation by introducing a waiting step in the cooling process while maintaining the high cooling rate and the abrupt doping profile.","PeriodicalId":403484,"journal":{"name":"Conference Proceedings. 2001 International Conference on Indium Phosphide and Related Materials. 13th IPRM (Cat. No.01CH37198)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel RTA technique for large diameter GaAs wafers managing to minimize both dopant diffusion and slip formation\",\"authors\":\"T. Sakurada, M. Kiyama, S. Nakajima, M. Tatsumi\",\"doi\":\"10.1109/ICIPRM.2001.929149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid thermal annealing (RTA) is useful for shallow channel device fabrication because of suppression of dopant diffusion. However, short RTA sequence easily causes slip formation due to thermal stress during the process, which is more serious in the case of larger diameter wafers. We investigated at what point slip generated during RTA by monitoring temperature distribution within a wafer and successfully suppress slip formation by introducing a waiting step in the cooling process while maintaining the high cooling rate and the abrupt doping profile.\",\"PeriodicalId\":403484,\"journal\":{\"name\":\"Conference Proceedings. 2001 International Conference on Indium Phosphide and Related Materials. 13th IPRM (Cat. No.01CH37198)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings. 2001 International Conference on Indium Phosphide and Related Materials. 13th IPRM (Cat. No.01CH37198)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPRM.2001.929149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 2001 International Conference on Indium Phosphide and Related Materials. 13th IPRM (Cat. No.01CH37198)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2001.929149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel RTA technique for large diameter GaAs wafers managing to minimize both dopant diffusion and slip formation
Rapid thermal annealing (RTA) is useful for shallow channel device fabrication because of suppression of dopant diffusion. However, short RTA sequence easily causes slip formation due to thermal stress during the process, which is more serious in the case of larger diameter wafers. We investigated at what point slip generated during RTA by monitoring temperature distribution within a wafer and successfully suppress slip formation by introducing a waiting step in the cooling process while maintaining the high cooling rate and the abrupt doping profile.