扩展高斯混合模型的变分学习与推理算法

Xin Wei, Jianxin Chen, Lei Wang, Jingwu Cui, B. Zheng
{"title":"扩展高斯混合模型的变分学习与推理算法","authors":"Xin Wei, Jianxin Chen, Lei Wang, Jingwu Cui, B. Zheng","doi":"10.1109/ICCCHINA.2014.7008278","DOIUrl":null,"url":null,"abstract":"In this paper, in order to properly evaluate the relative importance of priors and observed data in the Bayesian framework, we propose an extended Gaussian mixture model (EGMM) and design the corresponding learning inference algorithms. First, we define the likelihood function of the EGMM and then propose the variational learning algorithm for this EGMM. Moreover, the proposed model and approach are applied to speaker recognition. Experimental results demonstrate that this new approach generalizes the traditional GMM, offering a more powerful performance.","PeriodicalId":353402,"journal":{"name":"2014 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational learning and inference algorithms for extended Gaussian mixture model\",\"authors\":\"Xin Wei, Jianxin Chen, Lei Wang, Jingwu Cui, B. Zheng\",\"doi\":\"10.1109/ICCCHINA.2014.7008278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, in order to properly evaluate the relative importance of priors and observed data in the Bayesian framework, we propose an extended Gaussian mixture model (EGMM) and design the corresponding learning inference algorithms. First, we define the likelihood function of the EGMM and then propose the variational learning algorithm for this EGMM. Moreover, the proposed model and approach are applied to speaker recognition. Experimental results demonstrate that this new approach generalizes the traditional GMM, offering a more powerful performance.\",\"PeriodicalId\":353402,\"journal\":{\"name\":\"2014 IEEE/CIC International Conference on Communications in China (ICCC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/CIC International Conference on Communications in China (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCHINA.2014.7008278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCHINA.2014.7008278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了在贝叶斯框架中正确评估先验和观测数据的相对重要性,本文提出了一种扩展的高斯混合模型(EGMM),并设计了相应的学习推理算法。首先定义了模型的似然函数,然后提出了模型的变分学习算法。并将该模型和方法应用于说话人识别。实验结果表明,该方法对传统的GMM进行了推广,提供了更强大的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational learning and inference algorithms for extended Gaussian mixture model
In this paper, in order to properly evaluate the relative importance of priors and observed data in the Bayesian framework, we propose an extended Gaussian mixture model (EGMM) and design the corresponding learning inference algorithms. First, we define the likelihood function of the EGMM and then propose the variational learning algorithm for this EGMM. Moreover, the proposed model and approach are applied to speaker recognition. Experimental results demonstrate that this new approach generalizes the traditional GMM, offering a more powerful performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信