多重检验的二项模型近似

I. Adeleke, A. Adeyemi, E. Akarawak
{"title":"多重检验的二项模型近似","authors":"I. Adeleke, A. Adeyemi, E. Akarawak","doi":"10.51406/jnset.v16i2.1850","DOIUrl":null,"url":null,"abstract":"Multiple testing is associated with simultaneous testing of many hypotheses, and frequently calls for adjusting level of significance in some way that the probability of observing at least one significant result due to chance remains below the desired significance levels. This study developed a Binomial Model Approximations (BMA) method as an alternative to addressing the multiplicity problem associated with testing more than one hypothesis at a time. The proposed method has demonstrated capacity for controlling Type I Error Rate as sample size increases when compared with the existing Bonferroni and False Discovery Rate (FDR). \n  \n  \n ","PeriodicalId":389500,"journal":{"name":"Journal of Natural Sciences Engineering and Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A BINOMIAL MODEL APPROXIMATION FOR MULTIPLE TESTING\",\"authors\":\"I. Adeleke, A. Adeyemi, E. Akarawak\",\"doi\":\"10.51406/jnset.v16i2.1850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple testing is associated with simultaneous testing of many hypotheses, and frequently calls for adjusting level of significance in some way that the probability of observing at least one significant result due to chance remains below the desired significance levels. This study developed a Binomial Model Approximations (BMA) method as an alternative to addressing the multiplicity problem associated with testing more than one hypothesis at a time. The proposed method has demonstrated capacity for controlling Type I Error Rate as sample size increases when compared with the existing Bonferroni and False Discovery Rate (FDR). \\n  \\n  \\n \",\"PeriodicalId\":389500,\"journal\":{\"name\":\"Journal of Natural Sciences Engineering and Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Sciences Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51406/jnset.v16i2.1850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Sciences Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51406/jnset.v16i2.1850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多重检验与同时检验许多假设有关,并且经常要求以某种方式调整显著性水平,使观察到至少一个显著结果的概率由于偶然而低于期望的显著性水平。本研究开发了一种二项模型近似(BMA)方法,作为解决与一次测试多个假设相关的多重性问题的替代方法。与现有的Bonferroni和错误发现率(FDR)相比,所提出的方法显示出随样本量增加而控制I型错误率的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A BINOMIAL MODEL APPROXIMATION FOR MULTIPLE TESTING
Multiple testing is associated with simultaneous testing of many hypotheses, and frequently calls for adjusting level of significance in some way that the probability of observing at least one significant result due to chance remains below the desired significance levels. This study developed a Binomial Model Approximations (BMA) method as an alternative to addressing the multiplicity problem associated with testing more than one hypothesis at a time. The proposed method has demonstrated capacity for controlling Type I Error Rate as sample size increases when compared with the existing Bonferroni and False Discovery Rate (FDR).      
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信