基于IMU传感器的无基础设施室内定位装置的设计

T. Do, Ran Liu, C. Yuen, U-Xuan Tan
{"title":"基于IMU传感器的无基础设施室内定位装置的设计","authors":"T. Do, Ran Liu, C. Yuen, U-Xuan Tan","doi":"10.1109/ROBIO.2015.7419086","DOIUrl":null,"url":null,"abstract":"There has been an increasing demand for localization for personnel like firemen, and soldiers for various reasons ranging from safety to strategy planning and coordination. There is also a need for the localization system to be free from infrastructure. For example, it is not practical to place various transmitters in a building before the users enter the building. Many of the current methods involving inertial measurement unit (IMU) utilize step detection and step counting to estimate the displacement. This does not account for the various legs length and step sizes though. Some groups have proposed algorithm that involves placing the IMU on the foot to estimate the step size. However, users have commented that it affects their walking. Hence, this paper presents a new method to estimate both the forward displacement and orientation. In this paper, the sensor unit is placed at the pedestrians ankles for greater ease of usage. The 2D displacement is then computed based on the estimations of pitch angle, yaw angle and pedestrians leg length. The advantage of this method is that the pedestrians leg length is automatically estimated during walking by exploiting the motion equation of a simple pendulum model and hence, no prior measurement or training is required. The proposed method also employs the quaternion-based indirect Kalman filter to estimate the Euler angles containing the yaw angle (heading), the pitch angle and the roll angle. The heading (yaw angle) is corrected by updating the reading data of magnetometer an estimated magnetometer bias. The real-time localization system has been implemented and experiments involving various subjects are conducted. The experimental results demonstrates the accuracy with the averaged displacement error less than 3%.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Design of an infrastructureless in-door localization device using an IMU sensor\",\"authors\":\"T. Do, Ran Liu, C. Yuen, U-Xuan Tan\",\"doi\":\"10.1109/ROBIO.2015.7419086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been an increasing demand for localization for personnel like firemen, and soldiers for various reasons ranging from safety to strategy planning and coordination. There is also a need for the localization system to be free from infrastructure. For example, it is not practical to place various transmitters in a building before the users enter the building. Many of the current methods involving inertial measurement unit (IMU) utilize step detection and step counting to estimate the displacement. This does not account for the various legs length and step sizes though. Some groups have proposed algorithm that involves placing the IMU on the foot to estimate the step size. However, users have commented that it affects their walking. Hence, this paper presents a new method to estimate both the forward displacement and orientation. In this paper, the sensor unit is placed at the pedestrians ankles for greater ease of usage. The 2D displacement is then computed based on the estimations of pitch angle, yaw angle and pedestrians leg length. The advantage of this method is that the pedestrians leg length is automatically estimated during walking by exploiting the motion equation of a simple pendulum model and hence, no prior measurement or training is required. The proposed method also employs the quaternion-based indirect Kalman filter to estimate the Euler angles containing the yaw angle (heading), the pitch angle and the roll angle. The heading (yaw angle) is corrected by updating the reading data of magnetometer an estimated magnetometer bias. The real-time localization system has been implemented and experiments involving various subjects are conducted. The experimental results demonstrates the accuracy with the averaged displacement error less than 3%.\",\"PeriodicalId\":325536,\"journal\":{\"name\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2015.7419086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7419086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

由于各种原因,从安全到战略规划和协调,消防员和士兵等人员对本地化的需求越来越大。本地化系统还需要脱离基础设施。例如,在用户进入建筑物之前在建筑物中放置各种发射机是不实际的。目前许多涉及惯性测量单元(IMU)的方法都是利用步长检测和步长计数来估计位移。但这并没有考虑到不同的腿长和步长。一些小组提出了将IMU放在脚上以估计步长的算法。然而,有用户评论说,这影响了他们的行走。因此,本文提出了一种同时估计前向位移和方向的新方法。在本文中,传感器单元被放置在行人的脚踝,更便于使用。然后根据俯仰角、偏航角和行人腿长估计二维位移。该方法的优点是利用单摆模型的运动方程,在步行过程中自动估计出行人的腿长,不需要事先测量或训练。该方法还采用基于四元数的间接卡尔曼滤波来估计包含偏航角(航向)、俯仰角和横摇角的欧拉角。通过更新磁强计的读数数据和估计的磁强计偏差来修正航向(偏航角)。实现了实时定位系统,并进行了多学科实验。实验结果表明,该方法精度高,平均位移误差小于3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of an infrastructureless in-door localization device using an IMU sensor
There has been an increasing demand for localization for personnel like firemen, and soldiers for various reasons ranging from safety to strategy planning and coordination. There is also a need for the localization system to be free from infrastructure. For example, it is not practical to place various transmitters in a building before the users enter the building. Many of the current methods involving inertial measurement unit (IMU) utilize step detection and step counting to estimate the displacement. This does not account for the various legs length and step sizes though. Some groups have proposed algorithm that involves placing the IMU on the foot to estimate the step size. However, users have commented that it affects their walking. Hence, this paper presents a new method to estimate both the forward displacement and orientation. In this paper, the sensor unit is placed at the pedestrians ankles for greater ease of usage. The 2D displacement is then computed based on the estimations of pitch angle, yaw angle and pedestrians leg length. The advantage of this method is that the pedestrians leg length is automatically estimated during walking by exploiting the motion equation of a simple pendulum model and hence, no prior measurement or training is required. The proposed method also employs the quaternion-based indirect Kalman filter to estimate the Euler angles containing the yaw angle (heading), the pitch angle and the roll angle. The heading (yaw angle) is corrected by updating the reading data of magnetometer an estimated magnetometer bias. The real-time localization system has been implemented and experiments involving various subjects are conducted. The experimental results demonstrates the accuracy with the averaged displacement error less than 3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信