{"title":"双足步行机器人关节力矩轨迹优化规划","authors":"Van-Huan Dau, C. Chew, A. Poo","doi":"10.1109/RAMECH.2008.4681476","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method of trajectory planning for biped robots walking on flat terrain. In this approach, the hip and foot trajectories are designed in Cartesian space using polynomial interpolation. The key parameters which define the hip and foot trajectories are searched by genetic algorithm. The objective is to obtain stable walking trajectory with minimized joint-torques requirement. ZMP stability criterion is used to ensure physically realizable walking motion. The effectiveness of our method is verified by simulation of a humanoid robot named NUSBIP-II.","PeriodicalId":320560,"journal":{"name":"2008 IEEE Conference on Robotics, Automation and Mechatronics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimized Joint-Torques Trajectory Planning for Bipedal Walking Robots\",\"authors\":\"Van-Huan Dau, C. Chew, A. Poo\",\"doi\":\"10.1109/RAMECH.2008.4681476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method of trajectory planning for biped robots walking on flat terrain. In this approach, the hip and foot trajectories are designed in Cartesian space using polynomial interpolation. The key parameters which define the hip and foot trajectories are searched by genetic algorithm. The objective is to obtain stable walking trajectory with minimized joint-torques requirement. ZMP stability criterion is used to ensure physically realizable walking motion. The effectiveness of our method is verified by simulation of a humanoid robot named NUSBIP-II.\",\"PeriodicalId\":320560,\"journal\":{\"name\":\"2008 IEEE Conference on Robotics, Automation and Mechatronics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Conference on Robotics, Automation and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMECH.2008.4681476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Conference on Robotics, Automation and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMECH.2008.4681476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized Joint-Torques Trajectory Planning for Bipedal Walking Robots
This paper proposes a new method of trajectory planning for biped robots walking on flat terrain. In this approach, the hip and foot trajectories are designed in Cartesian space using polynomial interpolation. The key parameters which define the hip and foot trajectories are searched by genetic algorithm. The objective is to obtain stable walking trajectory with minimized joint-torques requirement. ZMP stability criterion is used to ensure physically realizable walking motion. The effectiveness of our method is verified by simulation of a humanoid robot named NUSBIP-II.