利用隐含关系加速逻辑电路优化

H. Ichihara, K. Kinoshita
{"title":"利用隐含关系加速逻辑电路优化","authors":"H. Ichihara, K. Kinoshita","doi":"10.1109/ATS.1997.643962","DOIUrl":null,"url":null,"abstract":"In logic synthesis the multi-level logic optimization methods using implication analysis has high performance but it needs a lot of computational time because of using test pattern generation to identify redundant faults. In this paper we proposed a fast redundancy identification method using implication relation instead of test pattern generation. Experimental results for benchmark circuits clearly show that the proposed method can accelerate the speed to identify redundancies without declining of the ability of the optimization.","PeriodicalId":330767,"journal":{"name":"Proceedings Sixth Asian Test Symposium (ATS'97)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On acceleration of logic circuits optimization using implication relations\",\"authors\":\"H. Ichihara, K. Kinoshita\",\"doi\":\"10.1109/ATS.1997.643962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In logic synthesis the multi-level logic optimization methods using implication analysis has high performance but it needs a lot of computational time because of using test pattern generation to identify redundant faults. In this paper we proposed a fast redundancy identification method using implication relation instead of test pattern generation. Experimental results for benchmark circuits clearly show that the proposed method can accelerate the speed to identify redundancies without declining of the ability of the optimization.\",\"PeriodicalId\":330767,\"journal\":{\"name\":\"Proceedings Sixth Asian Test Symposium (ATS'97)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth Asian Test Symposium (ATS'97)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS.1997.643962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth Asian Test Symposium (ATS'97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.1997.643962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在逻辑综合中,基于隐含分析的多级逻辑优化方法具有较高的性能,但由于需要生成测试模式来识别冗余故障,因此需要大量的计算时间。本文提出了一种利用隐含关系代替测试模式生成的快速冗余识别方法。基准电路的实验结果表明,该方法可以在不降低优化能力的前提下加快冗余识别速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On acceleration of logic circuits optimization using implication relations
In logic synthesis the multi-level logic optimization methods using implication analysis has high performance but it needs a lot of computational time because of using test pattern generation to identify redundant faults. In this paper we proposed a fast redundancy identification method using implication relation instead of test pattern generation. Experimental results for benchmark circuits clearly show that the proposed method can accelerate the speed to identify redundancies without declining of the ability of the optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信