消费者数据中的选择架构、隐私评估和选择偏差

Tesary Lin, Avner Strulov-Shlain
{"title":"消费者数据中的选择架构、隐私评估和选择偏差","authors":"Tesary Lin, Avner Strulov-Shlain","doi":"10.1145/3580507.3597674","DOIUrl":null,"url":null,"abstract":"Companies often deploy some form of \"choice architecture\" when collecting consumer data, designed to nudge consumers towards sharing more private information. This study examines when an emphasis on maximizing the volume of data shared when deploying choice architecture can alter the composition of the collected data, hence creating a trade-off between the quantity and representativeness of data collected. To this end, we ran a large-scale choice experiment to elicit consumers' incentive-compatible valuation for their private Facebook data while randomizing the choice frames they encountered. Within participants, we elicited WTA using a multiple-price list, followed by a free-text entry. Across participants, we randomized the choice default and the price anchor. The default varied between opt-in, opt-out, and active choice. Price anchor was the range of prices in the multiple price list, which was either $0--$50 (low) or $50--$100 (high).","PeriodicalId":210555,"journal":{"name":"Proceedings of the 24th ACM Conference on Economics and Computation","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choice Architecture, Privacy Valuations, and Selection Bias in Consumer Data\",\"authors\":\"Tesary Lin, Avner Strulov-Shlain\",\"doi\":\"10.1145/3580507.3597674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Companies often deploy some form of \\\"choice architecture\\\" when collecting consumer data, designed to nudge consumers towards sharing more private information. This study examines when an emphasis on maximizing the volume of data shared when deploying choice architecture can alter the composition of the collected data, hence creating a trade-off between the quantity and representativeness of data collected. To this end, we ran a large-scale choice experiment to elicit consumers' incentive-compatible valuation for their private Facebook data while randomizing the choice frames they encountered. Within participants, we elicited WTA using a multiple-price list, followed by a free-text entry. Across participants, we randomized the choice default and the price anchor. The default varied between opt-in, opt-out, and active choice. Price anchor was the range of prices in the multiple price list, which was either $0--$50 (low) or $50--$100 (high).\",\"PeriodicalId\":210555,\"journal\":{\"name\":\"Proceedings of the 24th ACM Conference on Economics and Computation\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM Conference on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3580507.3597674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580507.3597674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

企业在收集消费者数据时,通常会采用某种形式的“选择架构”,旨在推动消费者分享更多的私人信息。本研究考察了在部署选择架构时强调最大限度地共享数据量时,何时会改变所收集数据的组成,从而在所收集数据的数量和代表性之间产生权衡。为此,我们进行了一项大规模的选择实验,以引出消费者对其私人Facebook数据的激励相容估值,同时随机化他们遇到的选择框架。在参与者中,我们使用多重价格表来引出WTA,然后是自由文本条目。在参与者中,我们随机化了默认选择和价格锚。默认值在“选择加入”、“选择退出”和“主动选择”之间变化。价格锚是多重价格表中的价格范围,即0- 50美元(最低)或50- 100美元(最高)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choice Architecture, Privacy Valuations, and Selection Bias in Consumer Data
Companies often deploy some form of "choice architecture" when collecting consumer data, designed to nudge consumers towards sharing more private information. This study examines when an emphasis on maximizing the volume of data shared when deploying choice architecture can alter the composition of the collected data, hence creating a trade-off between the quantity and representativeness of data collected. To this end, we ran a large-scale choice experiment to elicit consumers' incentive-compatible valuation for their private Facebook data while randomizing the choice frames they encountered. Within participants, we elicited WTA using a multiple-price list, followed by a free-text entry. Across participants, we randomized the choice default and the price anchor. The default varied between opt-in, opt-out, and active choice. Price anchor was the range of prices in the multiple price list, which was either $0--$50 (low) or $50--$100 (high).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信