融合局部和全局特征的掌纹识别

Xin Pan, Q. Ruan, Yanxia Wang
{"title":"融合局部和全局特征的掌纹识别","authors":"Xin Pan, Q. Ruan, Yanxia Wang","doi":"10.1109/ISPACS.2007.4445969","DOIUrl":null,"url":null,"abstract":"Palmprint recognition is a rapidly developing biometrics technology over the last decade. However, there exist some typical problems when capturing palmprint images. First, the delta region in the center palm will raise the uneven light and brightness of the palmprint images varying with hand pressure, stretching and palm structure. Second, it is hard to align the palmprint images precisely to the same position, especially when the subjects are required to spread their hand on the scanner surface, even for the same palm. Either the global or the local features cannot satisfy the need for high recognition accuracy. Therefore, we propose a novel method using fusion of local and global features, extracted by non-negative factorization with sparseness constraint (NMFsc) and prominent component analysis (PCA), respectively, to improve the recognition performance. Experiments demonstrate the strong supplementary between local and global features for palmprint recognition.","PeriodicalId":220276,"journal":{"name":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Palmprint recognition using fusion of local and global features\",\"authors\":\"Xin Pan, Q. Ruan, Yanxia Wang\",\"doi\":\"10.1109/ISPACS.2007.4445969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Palmprint recognition is a rapidly developing biometrics technology over the last decade. However, there exist some typical problems when capturing palmprint images. First, the delta region in the center palm will raise the uneven light and brightness of the palmprint images varying with hand pressure, stretching and palm structure. Second, it is hard to align the palmprint images precisely to the same position, especially when the subjects are required to spread their hand on the scanner surface, even for the same palm. Either the global or the local features cannot satisfy the need for high recognition accuracy. Therefore, we propose a novel method using fusion of local and global features, extracted by non-negative factorization with sparseness constraint (NMFsc) and prominent component analysis (PCA), respectively, to improve the recognition performance. Experiments demonstrate the strong supplementary between local and global features for palmprint recognition.\",\"PeriodicalId\":220276,\"journal\":{\"name\":\"2007 International Symposium on Intelligent Signal Processing and Communication Systems\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Intelligent Signal Processing and Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2007.4445969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2007.4445969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

掌纹识别是近十年来发展迅速的一项生物识别技术。然而,掌纹图像的采集存在一些典型问题。首先,手掌中央的三角区域会使掌纹图像的光照和亮度随着手的压力、拉伸和手掌结构的变化而变化。其次,很难将掌纹图像精确地对齐到相同的位置,特别是当受试者被要求在扫描仪表面上摊开他们的手时,即使是同一个手掌。无论是全局特征还是局部特征都不能满足高识别精度的要求。因此,我们提出了一种融合局部和全局特征的新方法,分别通过稀疏约束非负因子分解(NMFsc)和显著成分分析(PCA)提取,以提高识别性能。实验表明,局部特征和全局特征之间具有很强的互补性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Palmprint recognition using fusion of local and global features
Palmprint recognition is a rapidly developing biometrics technology over the last decade. However, there exist some typical problems when capturing palmprint images. First, the delta region in the center palm will raise the uneven light and brightness of the palmprint images varying with hand pressure, stretching and palm structure. Second, it is hard to align the palmprint images precisely to the same position, especially when the subjects are required to spread their hand on the scanner surface, even for the same palm. Either the global or the local features cannot satisfy the need for high recognition accuracy. Therefore, we propose a novel method using fusion of local and global features, extracted by non-negative factorization with sparseness constraint (NMFsc) and prominent component analysis (PCA), respectively, to improve the recognition performance. Experiments demonstrate the strong supplementary between local and global features for palmprint recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信