正则化最小二乘势svr

Senior Member, A. K. Deb, Reshma Khemchandani, Suresh Chandra
{"title":"正则化最小二乘势svr","authors":"Senior Member, A. K. Deb, Reshma Khemchandani, Suresh Chandra","doi":"10.1109/INDCON.2006.302859","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a regularized least squares approach to potential SVRs. The proposed solution involves inverting a single matrix of small dimension. In the case of linear SVRs, the size of the matrix is independent of the number of data samples. Results involving benchmark data sets demonstrate the computational advantages of the proposal. In a recent publication, it has been highlighted that the margin in support vector machines (SVMs) is not scale invariant. This implies that an appropriate scaling can have an impact on the generalization performance of the SVM based regressor. Potential SVMs address this issue and suggest a new approach to regression","PeriodicalId":122715,"journal":{"name":"2006 Annual IEEE India Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularized Least Squares Potential SVRs\",\"authors\":\"Senior Member, A. K. Deb, Reshma Khemchandani, Suresh Chandra\",\"doi\":\"10.1109/INDCON.2006.302859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a regularized least squares approach to potential SVRs. The proposed solution involves inverting a single matrix of small dimension. In the case of linear SVRs, the size of the matrix is independent of the number of data samples. Results involving benchmark data sets demonstrate the computational advantages of the proposal. In a recent publication, it has been highlighted that the margin in support vector machines (SVMs) is not scale invariant. This implies that an appropriate scaling can have an impact on the generalization performance of the SVM based regressor. Potential SVMs address this issue and suggest a new approach to regression\",\"PeriodicalId\":122715,\"journal\":{\"name\":\"2006 Annual IEEE India Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Annual IEEE India Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2006.302859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2006.302859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种正则化最小二乘方法来求解潜在的svr。所提出的解决方案涉及对单个小维矩阵进行反求。在线性svr的情况下,矩阵的大小与数据样本的数量无关。涉及基准数据集的结果证明了该方案的计算优势。在最近的一篇文章中,强调了支持向量机(svm)的边际不是尺度不变的。这意味着适当的尺度会对基于SVM的回归器的泛化性能产生影响。潜在的支持向量机解决了这个问题,并提出了一种新的回归方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularized Least Squares Potential SVRs
In this paper, we propose a regularized least squares approach to potential SVRs. The proposed solution involves inverting a single matrix of small dimension. In the case of linear SVRs, the size of the matrix is independent of the number of data samples. Results involving benchmark data sets demonstrate the computational advantages of the proposal. In a recent publication, it has been highlighted that the margin in support vector machines (SVMs) is not scale invariant. This implies that an appropriate scaling can have an impact on the generalization performance of the SVM based regressor. Potential SVMs address this issue and suggest a new approach to regression
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信