基于人工神经网络的指纹识别框架

Ridouane Oulhiq, Saad Ibntahir, Marouane Sebgui, Z. Guennoun
{"title":"基于人工神经网络的指纹识别框架","authors":"Ridouane Oulhiq, Saad Ibntahir, Marouane Sebgui, Z. Guennoun","doi":"10.1109/SITA.2015.7358382","DOIUrl":null,"url":null,"abstract":"Fingerprinting is one of the most used biometrics for people identification, it relays on image processing and classification algorithms. In this work we propose and test a framework that enables fingerprint detection using a set of image pre-processing algorithm. Concerning the features extraction, we propose the use of the number of bifurcations in image localities, and we propose the use of Artificial Neural Network (ANN) for the classification. The performance of our framework is evaluated for three different activation functions and show that we can reach an accuracy of 81%.","PeriodicalId":174405,"journal":{"name":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A fingerprint recognition framework using Artificial Neural Network\",\"authors\":\"Ridouane Oulhiq, Saad Ibntahir, Marouane Sebgui, Z. Guennoun\",\"doi\":\"10.1109/SITA.2015.7358382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fingerprinting is one of the most used biometrics for people identification, it relays on image processing and classification algorithms. In this work we propose and test a framework that enables fingerprint detection using a set of image pre-processing algorithm. Concerning the features extraction, we propose the use of the number of bifurcations in image localities, and we propose the use of Artificial Neural Network (ANN) for the classification. The performance of our framework is evaluated for three different activation functions and show that we can reach an accuracy of 81%.\",\"PeriodicalId\":174405,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITA.2015.7358382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2015.7358382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

指纹识别是最常用的生物识别技术之一,它依赖于图像处理和分类算法。在这项工作中,我们提出并测试了一个框架,使指纹检测使用一组图像预处理算法。在特征提取方面,我们提出了利用图像局部分岔数进行特征提取,并提出了使用人工神经网络(ANN)进行分类。我们对三种不同的激活函数进行了性能评估,结果表明我们可以达到81%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fingerprint recognition framework using Artificial Neural Network
Fingerprinting is one of the most used biometrics for people identification, it relays on image processing and classification algorithms. In this work we propose and test a framework that enables fingerprint detection using a set of image pre-processing algorithm. Concerning the features extraction, we propose the use of the number of bifurcations in image localities, and we propose the use of Artificial Neural Network (ANN) for the classification. The performance of our framework is evaluated for three different activation functions and show that we can reach an accuracy of 81%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信