基于多项式的重球法对称矩阵高效函数计算方法

G. Karaduman
{"title":"基于多项式的重球法对称矩阵高效函数计算方法","authors":"G. Karaduman","doi":"10.59287/icpis.815","DOIUrl":null,"url":null,"abstract":"This paper presents a polynomial-based approach for efficiently computing functions ofsymmetric matrices by leveraging the Restarted Heavy Ball (RHB) method. The RHB method is employedto overcome the slow convergence issue commonly encountered when computing functions of symmetricmatrices. The key idea of our approach is to approximate the desired function using a polynomial. Byrepresenting the function as a polynomial, we can leverage the efficient computation of polynomials toaccelerate the overall function computation process. We introduce a systematic methodology forconstructing an optimal polynomial approximation that minimizes the approximation error. To furtherenhance the convergence speed, we incorporate the Restarted Heavy Ball method into our polynomialbased approach. The Restarted Heavy Ball iteration is applied after a certain number of iterations to resetthe computation process and mitigate the slow convergence behavior. The experimental results and analysisvalidate the effectiveness and practicality of our approach, highlighting its potential for various applicationsinvolving function computations of symmetric matrices. Overall, our polynomial-based approach,integrated with the Restarted Heavy Ball method, offers an efficient and accurate solution for computingfunctions of symmetric matrices. The experimental results and analysis validate the effectiveness andpracticality of our approach, highlighting its potential for various applications involving functioncomputations of symmetric matrices.","PeriodicalId":292916,"journal":{"name":"International Conference on Pioneer and Innovative Studies","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial-Based Approach for Efficient Function Computation of Symmetric Matrices Using Restarted Heavy Ball Method\",\"authors\":\"G. Karaduman\",\"doi\":\"10.59287/icpis.815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a polynomial-based approach for efficiently computing functions ofsymmetric matrices by leveraging the Restarted Heavy Ball (RHB) method. The RHB method is employedto overcome the slow convergence issue commonly encountered when computing functions of symmetricmatrices. The key idea of our approach is to approximate the desired function using a polynomial. Byrepresenting the function as a polynomial, we can leverage the efficient computation of polynomials toaccelerate the overall function computation process. We introduce a systematic methodology forconstructing an optimal polynomial approximation that minimizes the approximation error. To furtherenhance the convergence speed, we incorporate the Restarted Heavy Ball method into our polynomialbased approach. The Restarted Heavy Ball iteration is applied after a certain number of iterations to resetthe computation process and mitigate the slow convergence behavior. The experimental results and analysisvalidate the effectiveness and practicality of our approach, highlighting its potential for various applicationsinvolving function computations of symmetric matrices. Overall, our polynomial-based approach,integrated with the Restarted Heavy Ball method, offers an efficient and accurate solution for computingfunctions of symmetric matrices. The experimental results and analysis validate the effectiveness andpracticality of our approach, highlighting its potential for various applications involving functioncomputations of symmetric matrices.\",\"PeriodicalId\":292916,\"journal\":{\"name\":\"International Conference on Pioneer and Innovative Studies\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pioneer and Innovative Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59287/icpis.815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pioneer and Innovative Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59287/icpis.815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于多项式的对称矩阵函数的高效计算方法,该方法利用重球重新启动(RHB)方法。采用RHB方法克服了计算对称矩阵函数时经常遇到的收敛速度慢的问题。我们的方法的关键思想是用多项式近似期望的函数。通过将函数表示为多项式,我们可以利用多项式的高效计算来加速整个函数的计算过程。我们介绍了一种系统的方法来构造一个最优多项式近似,使近似误差最小化。为了进一步提高收敛速度,我们在基于多项式的方法中加入了重新启动重球方法。在一定次数的迭代后应用重启重球迭代来重置计算过程,缓解缓慢的收敛行为。实验结果和分析验证了我们方法的有效性和实用性,突出了它在涉及对称矩阵函数计算的各种应用中的潜力。总的来说,我们的基于多项式的方法,与重新启动重球方法相结合,为对称矩阵的函数计算提供了一个有效和准确的解决方案。实验结果和分析验证了我们方法的有效性和实用性,突出了它在涉及对称矩阵函数计算的各种应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial-Based Approach for Efficient Function Computation of Symmetric Matrices Using Restarted Heavy Ball Method
This paper presents a polynomial-based approach for efficiently computing functions ofsymmetric matrices by leveraging the Restarted Heavy Ball (RHB) method. The RHB method is employedto overcome the slow convergence issue commonly encountered when computing functions of symmetricmatrices. The key idea of our approach is to approximate the desired function using a polynomial. Byrepresenting the function as a polynomial, we can leverage the efficient computation of polynomials toaccelerate the overall function computation process. We introduce a systematic methodology forconstructing an optimal polynomial approximation that minimizes the approximation error. To furtherenhance the convergence speed, we incorporate the Restarted Heavy Ball method into our polynomialbased approach. The Restarted Heavy Ball iteration is applied after a certain number of iterations to resetthe computation process and mitigate the slow convergence behavior. The experimental results and analysisvalidate the effectiveness and practicality of our approach, highlighting its potential for various applicationsinvolving function computations of symmetric matrices. Overall, our polynomial-based approach,integrated with the Restarted Heavy Ball method, offers an efficient and accurate solution for computingfunctions of symmetric matrices. The experimental results and analysis validate the effectiveness andpracticality of our approach, highlighting its potential for various applications involving functioncomputations of symmetric matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信