季节性ARIMA工作负荷预测模型对大型多人在线游戏QoE的影响

Eya Dhib, N. Zangar, N. Tabbane, K. Boussetta
{"title":"季节性ARIMA工作负荷预测模型对大型多人在线游戏QoE的影响","authors":"Eya Dhib, N. Zangar, N. Tabbane, K. Boussetta","doi":"10.1109/ICMCS.2016.7905664","DOIUrl":null,"url":null,"abstract":"Ensuring an acceptable Quality of Experience (QoE) for all users is a fundamental requirement to the economical development of the Massively Multiplayers Online Gaming (MMOG) companies. However, the high load variability of such MMOG services makes hard to satisfy a good QoE. This paper aims to contribute to this effort, by proposing a proactive dynamic provisioning approach which predicts future workload of an MMOG service and allocates in accordance the sufficient amount of resources. Based on real MMOG traces, we propose a Seasonal Autoregressive Integrated Moving Average (SARIMA) model that generally fits the workload behavior of the MMOG cloud service. We implement our prediction-based algorithm that allocates resources according to predicted workload by SARIMA model. Finally, we evaluate impact of our proposed algorithm on the QoE, where experiments prove noticeable improvements.","PeriodicalId":345854,"journal":{"name":"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Impact of Seasonal ARIMA workload prediction model on QoE for Massively Multiplayers Online Gaming\",\"authors\":\"Eya Dhib, N. Zangar, N. Tabbane, K. Boussetta\",\"doi\":\"10.1109/ICMCS.2016.7905664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring an acceptable Quality of Experience (QoE) for all users is a fundamental requirement to the economical development of the Massively Multiplayers Online Gaming (MMOG) companies. However, the high load variability of such MMOG services makes hard to satisfy a good QoE. This paper aims to contribute to this effort, by proposing a proactive dynamic provisioning approach which predicts future workload of an MMOG service and allocates in accordance the sufficient amount of resources. Based on real MMOG traces, we propose a Seasonal Autoregressive Integrated Moving Average (SARIMA) model that generally fits the workload behavior of the MMOG cloud service. We implement our prediction-based algorithm that allocates resources according to predicted workload by SARIMA model. Finally, we evaluate impact of our proposed algorithm on the QoE, where experiments prove noticeable improvements.\",\"PeriodicalId\":345854,\"journal\":{\"name\":\"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMCS.2016.7905664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCS.2016.7905664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

确保所有用户的体验质量(QoE)是大型多人在线游戏(MMOG)公司经济发展的基本要求。然而,这种MMOG服务的高负载可变性使得很难满足良好的QoE。本文旨在通过提出一种预测MMOG服务未来工作负载并根据资源的充足量进行分配的主动动态供应方法,为这一工作做出贡献。基于真实的MMOG轨迹,我们提出了一个季节性自回归综合移动平均(SARIMA)模型,该模型通常适合MMOG云服务的工作负载行为。我们实现了基于预测的算法,该算法通过SARIMA模型根据预测的工作量分配资源。最后,我们评估了我们提出的算法对QoE的影响,实验证明了明显的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Seasonal ARIMA workload prediction model on QoE for Massively Multiplayers Online Gaming
Ensuring an acceptable Quality of Experience (QoE) for all users is a fundamental requirement to the economical development of the Massively Multiplayers Online Gaming (MMOG) companies. However, the high load variability of such MMOG services makes hard to satisfy a good QoE. This paper aims to contribute to this effort, by proposing a proactive dynamic provisioning approach which predicts future workload of an MMOG service and allocates in accordance the sufficient amount of resources. Based on real MMOG traces, we propose a Seasonal Autoregressive Integrated Moving Average (SARIMA) model that generally fits the workload behavior of the MMOG cloud service. We implement our prediction-based algorithm that allocates resources according to predicted workload by SARIMA model. Finally, we evaluate impact of our proposed algorithm on the QoE, where experiments prove noticeable improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信