边缘计算中依赖任务调度的改进二元灰狼优化器

Kaihua Jiang, Hong Ni, Peng Sun, Rui Han
{"title":"边缘计算中依赖任务调度的改进二元灰狼优化器","authors":"Kaihua Jiang, Hong Ni, Peng Sun, Rui Han","doi":"10.23919/ICACT.2019.8702018","DOIUrl":null,"url":null,"abstract":"As an emerging computing paradigm, edge computing has attracted lots of interest from both academia and industry recently. By offloading tasks to the devices at the edge of the network, edge computing reduces service delay and bandwidth consumption. So the task scheduling algorithm influences the capabilities of edge computing significantly. In this paper, an improved binary grey wolf optimizer (IBGWO) is proposed to solve the dependent task scheduling problem in edge computing. By upgrading the convergence parameter and the binarization transfer function, IBGWO obtains rapid convergence, stable approximate optimal solutions and a proper balance between exploration and exploitation. Simulation results demonstrate that the proposed IBGWO outperforms binary bat algorithm (BBA) and binary particle swarm optimization (BPSO) in convergence, accuracy, and stability.","PeriodicalId":226261,"journal":{"name":"2019 21st International Conference on Advanced Communication Technology (ICACT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An Improved Binary Grey Wolf Optimizer for Dependent Task Scheduling in Edge Computing\",\"authors\":\"Kaihua Jiang, Hong Ni, Peng Sun, Rui Han\",\"doi\":\"10.23919/ICACT.2019.8702018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an emerging computing paradigm, edge computing has attracted lots of interest from both academia and industry recently. By offloading tasks to the devices at the edge of the network, edge computing reduces service delay and bandwidth consumption. So the task scheduling algorithm influences the capabilities of edge computing significantly. In this paper, an improved binary grey wolf optimizer (IBGWO) is proposed to solve the dependent task scheduling problem in edge computing. By upgrading the convergence parameter and the binarization transfer function, IBGWO obtains rapid convergence, stable approximate optimal solutions and a proper balance between exploration and exploitation. Simulation results demonstrate that the proposed IBGWO outperforms binary bat algorithm (BBA) and binary particle swarm optimization (BPSO) in convergence, accuracy, and stability.\",\"PeriodicalId\":226261,\"journal\":{\"name\":\"2019 21st International Conference on Advanced Communication Technology (ICACT)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 21st International Conference on Advanced Communication Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACT.2019.8702018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 21st International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT.2019.8702018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

边缘计算作为一种新兴的计算范式,近年来引起了学术界和工业界的广泛关注。边缘计算通过将任务转移到网络边缘的设备上,减少了业务延迟和带宽消耗。因此,任务调度算法对边缘计算的性能影响很大。针对边缘计算中的任务调度问题,提出了一种改进的二元灰狼优化器(IBGWO)。通过改进收敛参数和二值化传递函数,实现了快速收敛、稳定的近似最优解和勘探与开采的合理平衡。仿真结果表明,该算法在收敛性、精度和稳定性方面均优于二进制蝙蝠算法(BBA)和二进制粒子群算法(BPSO)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Binary Grey Wolf Optimizer for Dependent Task Scheduling in Edge Computing
As an emerging computing paradigm, edge computing has attracted lots of interest from both academia and industry recently. By offloading tasks to the devices at the edge of the network, edge computing reduces service delay and bandwidth consumption. So the task scheduling algorithm influences the capabilities of edge computing significantly. In this paper, an improved binary grey wolf optimizer (IBGWO) is proposed to solve the dependent task scheduling problem in edge computing. By upgrading the convergence parameter and the binarization transfer function, IBGWO obtains rapid convergence, stable approximate optimal solutions and a proper balance between exploration and exploitation. Simulation results demonstrate that the proposed IBGWO outperforms binary bat algorithm (BBA) and binary particle swarm optimization (BPSO) in convergence, accuracy, and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信