评估和检验长期风险模型:国际证据

Andras Fulop, Junye Li, Hening Liu, Cheng Yan
{"title":"评估和检验长期风险模型:国际证据","authors":"Andras Fulop, Junye Li, Hening Liu, Cheng Yan","doi":"10.2139/ssrn.3857366","DOIUrl":null,"url":null,"abstract":"We estimate and test long-run risk models using international macroeconomic and financial data. The benchmark model features a representative agent who has recursive preferences with a time preference shock, a persistent component in expected consumption growth, and stochastic volatility in fundamentals characterized by an autoregressive Gamma process. We construct a comprehensive dataset with quarterly frequency in the post-war period for ten developed countries and employ an efficient likelihood-based Bayesian method that exploits up-to-date sequential Monte Carlo methods to make full econometric inference. Our estimation provides international evidence in support of long-run risks, time-varying preference shocks, and countercyclicality of the stochastic discount factor.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating and Testing Long-Run Risk Models: International Evidence\",\"authors\":\"Andras Fulop, Junye Li, Hening Liu, Cheng Yan\",\"doi\":\"10.2139/ssrn.3857366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We estimate and test long-run risk models using international macroeconomic and financial data. The benchmark model features a representative agent who has recursive preferences with a time preference shock, a persistent component in expected consumption growth, and stochastic volatility in fundamentals characterized by an autoregressive Gamma process. We construct a comprehensive dataset with quarterly frequency in the post-war period for ten developed countries and employ an efficient likelihood-based Bayesian method that exploits up-to-date sequential Monte Carlo methods to make full econometric inference. Our estimation provides international evidence in support of long-run risks, time-varying preference shocks, and countercyclicality of the stochastic discount factor.\",\"PeriodicalId\":251522,\"journal\":{\"name\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3857366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3857366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用国际宏观经济和金融数据来估计和测试长期风险模型。基准模型的特征是具有递归偏好的代表性代理,具有时间偏好冲击,预期消费增长的持久成分,以及以自回归Gamma过程为特征的基本面的随机波动。我们构建了战后10个发达国家季度频率的综合数据集,并采用有效的基于似然的贝叶斯方法,该方法利用最新的顺序蒙特卡罗方法进行全面的计量经济学推断。我们的估计为支持长期风险、时变偏好冲击和随机贴现因子的逆周期性提供了国际证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating and Testing Long-Run Risk Models: International Evidence
We estimate and test long-run risk models using international macroeconomic and financial data. The benchmark model features a representative agent who has recursive preferences with a time preference shock, a persistent component in expected consumption growth, and stochastic volatility in fundamentals characterized by an autoregressive Gamma process. We construct a comprehensive dataset with quarterly frequency in the post-war period for ten developed countries and employ an efficient likelihood-based Bayesian method that exploits up-to-date sequential Monte Carlo methods to make full econometric inference. Our estimation provides international evidence in support of long-run risks, time-varying preference shocks, and countercyclicality of the stochastic discount factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信