{"title":"用粘度法研究阴离子表面活性剂与辣木种子凝固蛋白的相互作用","authors":"R. Maikokera, H. Kwaambwa","doi":"10.1155/2009/927329","DOIUrl":null,"url":null,"abstract":"The intrinsic viscosity of the coagulant protein was evaluated from the flow times of the protein solutions through a capillary viscometer, and the results suggested the coagulant protein to be globular. The interactions of the coagulant protein with anionic surfactant sodium dodecyl sulphate (SDS) and sodium dodecyl benzene sulfonate (SDBS) were also investigated by capillary viscometry. We conclude that there is strong protein-surfactant interaction at very low surfactant concentrations, and the behavior of the anionic surfactants in solutions containing coagulant protein is very similar. The viscometry results of protein-SDS system are compared with surface tension, fluorescence, and circular dichroism reported earlier. Combining the results of the four studies, the four approaches seem to confirm the same picture of the coagulant protein-SDS interaction. All the physical quantities when studied as function of surfactant concentration for 0.05% (w/v) protein solution either exhibited a maximum or minimum at a critical SDS concentration.","PeriodicalId":229171,"journal":{"name":"Research Letters in Physical Chemistry","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Use of Viscosity to Probe the Interaction of Anionic Surfactants with a Coagulant Protein from Moringa oleifera Seeds\",\"authors\":\"R. Maikokera, H. Kwaambwa\",\"doi\":\"10.1155/2009/927329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intrinsic viscosity of the coagulant protein was evaluated from the flow times of the protein solutions through a capillary viscometer, and the results suggested the coagulant protein to be globular. The interactions of the coagulant protein with anionic surfactant sodium dodecyl sulphate (SDS) and sodium dodecyl benzene sulfonate (SDBS) were also investigated by capillary viscometry. We conclude that there is strong protein-surfactant interaction at very low surfactant concentrations, and the behavior of the anionic surfactants in solutions containing coagulant protein is very similar. The viscometry results of protein-SDS system are compared with surface tension, fluorescence, and circular dichroism reported earlier. Combining the results of the four studies, the four approaches seem to confirm the same picture of the coagulant protein-SDS interaction. All the physical quantities when studied as function of surfactant concentration for 0.05% (w/v) protein solution either exhibited a maximum or minimum at a critical SDS concentration.\",\"PeriodicalId\":229171,\"journal\":{\"name\":\"Research Letters in Physical Chemistry\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Letters in Physical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2009/927329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Letters in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2009/927329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of Viscosity to Probe the Interaction of Anionic Surfactants with a Coagulant Protein from Moringa oleifera Seeds
The intrinsic viscosity of the coagulant protein was evaluated from the flow times of the protein solutions through a capillary viscometer, and the results suggested the coagulant protein to be globular. The interactions of the coagulant protein with anionic surfactant sodium dodecyl sulphate (SDS) and sodium dodecyl benzene sulfonate (SDBS) were also investigated by capillary viscometry. We conclude that there is strong protein-surfactant interaction at very low surfactant concentrations, and the behavior of the anionic surfactants in solutions containing coagulant protein is very similar. The viscometry results of protein-SDS system are compared with surface tension, fluorescence, and circular dichroism reported earlier. Combining the results of the four studies, the four approaches seem to confirm the same picture of the coagulant protein-SDS interaction. All the physical quantities when studied as function of surfactant concentration for 0.05% (w/v) protein solution either exhibited a maximum or minimum at a critical SDS concentration.