近场源定位的确定性最大似然法:算法与性能分析

Erdinç Çekli, H. A. Çırpan
{"title":"近场源定位的确定性最大似然法:算法与性能分析","authors":"Erdinç Çekli, H. A. Çırpan","doi":"10.1109/ICECS.2001.957683","DOIUrl":null,"url":null,"abstract":"A deterministic maximum likelihood localization algorithm is adapted to estimate the direction of arrival and range parameters of the near field sources. Since the direct maximum likelihood estimation of near-field source parameters results in complicated multi-parameter optimization problems, we reformulated the estimation problem in terms of actual-data sample, called the incomplete data and a hypothetical data set, called the complete data and then devised the expectation/maximization iterative method for obtaining maximum likelihood estimates. The performance analysis of the proposed algorithm is then carried out through the evaluation of Cramer-Rao bounds. Finally, some simulation results are presented.","PeriodicalId":141392,"journal":{"name":"ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deterministic maximum likelihood method for the localization of near-field sources: algorithm and performance analysis\",\"authors\":\"Erdinç Çekli, H. A. Çırpan\",\"doi\":\"10.1109/ICECS.2001.957683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deterministic maximum likelihood localization algorithm is adapted to estimate the direction of arrival and range parameters of the near field sources. Since the direct maximum likelihood estimation of near-field source parameters results in complicated multi-parameter optimization problems, we reformulated the estimation problem in terms of actual-data sample, called the incomplete data and a hypothetical data set, called the complete data and then devised the expectation/maximization iterative method for obtaining maximum likelihood estimates. The performance analysis of the proposed algorithm is then carried out through the evaluation of Cramer-Rao bounds. Finally, some simulation results are presented.\",\"PeriodicalId\":141392,\"journal\":{\"name\":\"ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2001.957683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2001.957683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

采用确定性最大似然定位算法估计近场源的到达方向和距离参数。由于近场源参数的直接极大似然估计会导致复杂的多参数优化问题,我们将估计问题重新表述为实际数据样本(称为不完整数据)和假设数据集(称为完整数据),然后设计了期望/最大化迭代法来获得最大似然估计。然后通过对Cramer-Rao界的评估对所提出的算法进行性能分析。最后给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic maximum likelihood method for the localization of near-field sources: algorithm and performance analysis
A deterministic maximum likelihood localization algorithm is adapted to estimate the direction of arrival and range parameters of the near field sources. Since the direct maximum likelihood estimation of near-field source parameters results in complicated multi-parameter optimization problems, we reformulated the estimation problem in terms of actual-data sample, called the incomplete data and a hypothetical data set, called the complete data and then devised the expectation/maximization iterative method for obtaining maximum likelihood estimates. The performance analysis of the proposed algorithm is then carried out through the evaluation of Cramer-Rao bounds. Finally, some simulation results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信