层状介质的三维时域有限差分法亚表面散射计算

U. Oguz, L. Gurel
{"title":"层状介质的三维时域有限差分法亚表面散射计算","authors":"U. Oguz, L. Gurel","doi":"10.1109/APS.1997.631711","DOIUrl":null,"url":null,"abstract":"The finite-difference time-domain (FDTD) method is suitable for solving scattering problems that contain several inhomogeneities such as multiple objects of different material properties buried in a layered medium. The advantage of the FDTD method is that the number of unknowns remains the same and a small amount of extra modeling effort is needed for these problems. We have developed a three-dimensional (3D) FDTD computer program that employs pure scattered-field formulation and perfectly matched layers (PML) as the absorbing boundary condition (ABC) of choice. The purpose of this study is to model a subsurface radar and to observe and distinguish between the fields scattered from various buried objects with different parameters such as the size, depth, number, etc.","PeriodicalId":283897,"journal":{"name":"IEEE Antennas and Propagation Society International Symposium 1997. Digest","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Subsurface-scattering calculations via the 3D FDTD method employing PML ABC for layered media\",\"authors\":\"U. Oguz, L. Gurel\",\"doi\":\"10.1109/APS.1997.631711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finite-difference time-domain (FDTD) method is suitable for solving scattering problems that contain several inhomogeneities such as multiple objects of different material properties buried in a layered medium. The advantage of the FDTD method is that the number of unknowns remains the same and a small amount of extra modeling effort is needed for these problems. We have developed a three-dimensional (3D) FDTD computer program that employs pure scattered-field formulation and perfectly matched layers (PML) as the absorbing boundary condition (ABC) of choice. The purpose of this study is to model a subsurface radar and to observe and distinguish between the fields scattered from various buried objects with different parameters such as the size, depth, number, etc.\",\"PeriodicalId\":283897,\"journal\":{\"name\":\"IEEE Antennas and Propagation Society International Symposium 1997. Digest\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Antennas and Propagation Society International Symposium 1997. Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.1997.631711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Propagation Society International Symposium 1997. Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1997.631711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

时域有限差分(FDTD)方法适用于多层介质中含有多种不均匀性的散射问题,如埋藏有多个不同材料性质的物体。FDTD方法的优点是未知数的数量保持不变,并且这些问题只需要少量的额外建模工作。我们开发了一个三维(3D)时域有限差分计算机程序,该程序采用纯散射场公式和完全匹配层(PML)作为吸收边界条件(ABC)的选择。本研究的目的是建立一个地下雷达模型,对不同大小、深度、数量等参数的各种地物散射场进行观测和区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subsurface-scattering calculations via the 3D FDTD method employing PML ABC for layered media
The finite-difference time-domain (FDTD) method is suitable for solving scattering problems that contain several inhomogeneities such as multiple objects of different material properties buried in a layered medium. The advantage of the FDTD method is that the number of unknowns remains the same and a small amount of extra modeling effort is needed for these problems. We have developed a three-dimensional (3D) FDTD computer program that employs pure scattered-field formulation and perfectly matched layers (PML) as the absorbing boundary condition (ABC) of choice. The purpose of this study is to model a subsurface radar and to observe and distinguish between the fields scattered from various buried objects with different parameters such as the size, depth, number, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信