{"title":"一种用于低功耗运动矢量提取的非易失性内存逻辑电路的细粒度功率门控方案","authors":"Magdalena Sihotang, S. Matsunaga, T. Hanyu","doi":"10.1109/NEWCAS.2012.6329062","DOIUrl":null,"url":null,"abstract":"Data-transfer localization is a key technique to solve communication bottleneck between memory and logic modules in realizing high-speed VLSI systems, while it is difficult to use power-gating technique because volatile storage functions are distributed in a CMOS logic-circuit plane, which causes large power dissipation. In this paper, we utilize nonvolatile logic-in-memory (NV-LIM) architecture, where nonvolatile storage functions are distributed over a logic-circuit plane, to solve the above issues. As a typical example of the NV-LIM circuit, we apply it to motion-vector extraction. By the use of fine-grained power-gating technique, total power dissipation of the proposed hardware can be reduced to 60% in comparison with that of a conventional CMOS-only-based hardware.","PeriodicalId":122918,"journal":{"name":"10th IEEE International NEWCAS Conference","volume":"2004 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-grained power-gating scheme of a nonvolatile logic-in-memory circuit for low-power motion-vector extraction\",\"authors\":\"Magdalena Sihotang, S. Matsunaga, T. Hanyu\",\"doi\":\"10.1109/NEWCAS.2012.6329062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-transfer localization is a key technique to solve communication bottleneck between memory and logic modules in realizing high-speed VLSI systems, while it is difficult to use power-gating technique because volatile storage functions are distributed in a CMOS logic-circuit plane, which causes large power dissipation. In this paper, we utilize nonvolatile logic-in-memory (NV-LIM) architecture, where nonvolatile storage functions are distributed over a logic-circuit plane, to solve the above issues. As a typical example of the NV-LIM circuit, we apply it to motion-vector extraction. By the use of fine-grained power-gating technique, total power dissipation of the proposed hardware can be reduced to 60% in comparison with that of a conventional CMOS-only-based hardware.\",\"PeriodicalId\":122918,\"journal\":{\"name\":\"10th IEEE International NEWCAS Conference\",\"volume\":\"2004 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th IEEE International NEWCAS Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2012.6329062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International NEWCAS Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2012.6329062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fine-grained power-gating scheme of a nonvolatile logic-in-memory circuit for low-power motion-vector extraction
Data-transfer localization is a key technique to solve communication bottleneck between memory and logic modules in realizing high-speed VLSI systems, while it is difficult to use power-gating technique because volatile storage functions are distributed in a CMOS logic-circuit plane, which causes large power dissipation. In this paper, we utilize nonvolatile logic-in-memory (NV-LIM) architecture, where nonvolatile storage functions are distributed over a logic-circuit plane, to solve the above issues. As a typical example of the NV-LIM circuit, we apply it to motion-vector extraction. By the use of fine-grained power-gating technique, total power dissipation of the proposed hardware can be reduced to 60% in comparison with that of a conventional CMOS-only-based hardware.