展台融合:有效的位融合乘数与展台编码

Seokho Lee, Youngmin Kim
{"title":"展台融合:有效的位融合乘数与展台编码","authors":"Seokho Lee, Youngmin Kim","doi":"10.1109/ISOCC50952.2020.9332943","DOIUrl":null,"url":null,"abstract":"Recently, several attempts have been made to optimize Deep Neural Networks (DNNs) through various hardware acceleration methods. Among them, Bit Fusion, the dynamic bit-level fusion/decomposition hardware architecture, was noted. We introduce a new model structure, Booth Fusion, which makes dynamic bit-level operations more efficient by implementing Bit Fusion with booth encoding. Our design shows improvements in 16.4% for the number of LUT and 14.2% for throughput.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Booth Fusion: Efficient Bit Fusion Multiplier with Booth Encoding\",\"authors\":\"Seokho Lee, Youngmin Kim\",\"doi\":\"10.1109/ISOCC50952.2020.9332943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, several attempts have been made to optimize Deep Neural Networks (DNNs) through various hardware acceleration methods. Among them, Bit Fusion, the dynamic bit-level fusion/decomposition hardware architecture, was noted. We introduce a new model structure, Booth Fusion, which makes dynamic bit-level operations more efficient by implementing Bit Fusion with booth encoding. Our design shows improvements in 16.4% for the number of LUT and 14.2% for throughput.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9332943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,人们尝试通过各种硬件加速方法来优化深度神经网络(dnn)。其中,Bit Fusion是一种动态比特级融合/分解硬件架构。我们引入了一种新的模型结构,Booth Fusion,它通过实现Bit Fusion和Booth编码来提高动态比特级操作的效率。我们的设计显示LUT的数量提高了16.4%,吞吐量提高了14.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Booth Fusion: Efficient Bit Fusion Multiplier with Booth Encoding
Recently, several attempts have been made to optimize Deep Neural Networks (DNNs) through various hardware acceleration methods. Among them, Bit Fusion, the dynamic bit-level fusion/decomposition hardware architecture, was noted. We introduce a new model structure, Booth Fusion, which makes dynamic bit-level operations more efficient by implementing Bit Fusion with booth encoding. Our design shows improvements in 16.4% for the number of LUT and 14.2% for throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信