飞行模拟器模型参考神经网络控制策略

Hongjie Hu, Jiyang Liu, Lin Wang
{"title":"飞行模拟器模型参考神经网络控制策略","authors":"Hongjie Hu, Jiyang Liu, Lin Wang","doi":"10.1109/ICMA.2010.5589247","DOIUrl":null,"url":null,"abstract":"A control scheme combining novel model reference adaptive control (MRAC) and neural network (NN) is proposed in this paper to achieve high tracking precision for servo systems. This scheme comprises an MRAC controller and an online NN controller in the velocity-loop and a traditional PD controller in the position-loop. For reducing influences which arose from modeling error, unknown model dynamics, parameter variation and disturbance acted on the velocity-loop, the NN controller is introduced to reduce the various influences mentioned above, and to adjust system to track the nominal velocity-loop reference model. Especially, as an innovation, a robust item is adopted to guarantee the system globally steady. Based on Lyapunov stability theory, updating algorithm of the weights of the NN controller, parameters of the MRAC and robust item are designed. Experiment results demonstrate that the proposed strategy can achieve high tracking precision for real-time position close-loop servo system.","PeriodicalId":145608,"journal":{"name":"2010 IEEE International Conference on Mechatronics and Automation","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model reference neural network control strategy for flight simulator\",\"authors\":\"Hongjie Hu, Jiyang Liu, Lin Wang\",\"doi\":\"10.1109/ICMA.2010.5589247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A control scheme combining novel model reference adaptive control (MRAC) and neural network (NN) is proposed in this paper to achieve high tracking precision for servo systems. This scheme comprises an MRAC controller and an online NN controller in the velocity-loop and a traditional PD controller in the position-loop. For reducing influences which arose from modeling error, unknown model dynamics, parameter variation and disturbance acted on the velocity-loop, the NN controller is introduced to reduce the various influences mentioned above, and to adjust system to track the nominal velocity-loop reference model. Especially, as an innovation, a robust item is adopted to guarantee the system globally steady. Based on Lyapunov stability theory, updating algorithm of the weights of the NN controller, parameters of the MRAC and robust item are designed. Experiment results demonstrate that the proposed strategy can achieve high tracking precision for real-time position close-loop servo system.\",\"PeriodicalId\":145608,\"journal\":{\"name\":\"2010 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2010.5589247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2010.5589247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了实现伺服系统的高跟踪精度,提出了一种新型模型参考自适应控制(MRAC)与神经网络相结合的控制方案。该方案在速度环中采用MRAC控制器和在线神经网络控制器,在位置环中采用传统PD控制器。为了减少建模误差、未知模型动力学、参数变化和干扰对速度环的影响,引入了神经网络控制器来减小上述各种影响,并使系统跟踪标称速度环参考模型。特别地,作为一种创新,采用了鲁棒项来保证系统的全局稳定。基于李雅普诺夫稳定性理论,设计了神经网络控制器权值、MRAC参数和鲁棒项的更新算法。实验结果表明,该策略对实时位置闭环伺服系统具有较高的跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model reference neural network control strategy for flight simulator
A control scheme combining novel model reference adaptive control (MRAC) and neural network (NN) is proposed in this paper to achieve high tracking precision for servo systems. This scheme comprises an MRAC controller and an online NN controller in the velocity-loop and a traditional PD controller in the position-loop. For reducing influences which arose from modeling error, unknown model dynamics, parameter variation and disturbance acted on the velocity-loop, the NN controller is introduced to reduce the various influences mentioned above, and to adjust system to track the nominal velocity-loop reference model. Especially, as an innovation, a robust item is adopted to guarantee the system globally steady. Based on Lyapunov stability theory, updating algorithm of the weights of the NN controller, parameters of the MRAC and robust item are designed. Experiment results demonstrate that the proposed strategy can achieve high tracking precision for real-time position close-loop servo system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信