高温工况下下填料退化建模及其对FCBGA封装可靠性的影响

P. Lall, Madhu L. Kasturi, Haotian Wu, Edward Davis
{"title":"高温工况下下填料退化建模及其对FCBGA封装可靠性的影响","authors":"P. Lall, Madhu L. Kasturi, Haotian Wu, Edward Davis","doi":"10.1115/ipack2022-97433","DOIUrl":null,"url":null,"abstract":"\n The automotive underhood electronics are subjected to temperatures in the range of 150 to 200°C for prolonged periods. The coefficient of thermal expansion mismatch between the chip and the substrate results in the fatigue-failure of solder joints when operating at high temperatures. Underfills provide extra support to the flip-chip bumps, enhancing the fatigue life and reducing the solder joint strains. Models and material degradation data are needed for the underfills exposed to high temperatures. The effect of the evolution of non-linear constitutive behavior of underfills on the solder balls and the study of the evolution of viscoelastic behavior of underfills have not been studied. In this paper, the evolution of underfill properties over 1-year has been measured for two underfills at sustained high-temperature operation. The aging data has been reported at 30, 60, 120, 240, and 360 days at 100°C, 125°C, and 150°C. The effect of non-linear property (Prony series) evolution of underfills on the FCBGA (Flip Chip Ball Grid Array) package reliability has been evaluated. The quarter FCBGA package is modeled from −40°C to 125°C. The results show that the flip-chip plastic work per unit volume of pristine-linear-elastic constitute model underfill FCBGA was much lower compared to pristine-viscoelastic underfill model FCBGA. Results show the importance of considering the non-linear underfill properties instead of linear properties.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Underfill Degradation and Its Effect on FCBGA Package Reliability Under High-Temperature Operation\",\"authors\":\"P. Lall, Madhu L. Kasturi, Haotian Wu, Edward Davis\",\"doi\":\"10.1115/ipack2022-97433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The automotive underhood electronics are subjected to temperatures in the range of 150 to 200°C for prolonged periods. The coefficient of thermal expansion mismatch between the chip and the substrate results in the fatigue-failure of solder joints when operating at high temperatures. Underfills provide extra support to the flip-chip bumps, enhancing the fatigue life and reducing the solder joint strains. Models and material degradation data are needed for the underfills exposed to high temperatures. The effect of the evolution of non-linear constitutive behavior of underfills on the solder balls and the study of the evolution of viscoelastic behavior of underfills have not been studied. In this paper, the evolution of underfill properties over 1-year has been measured for two underfills at sustained high-temperature operation. The aging data has been reported at 30, 60, 120, 240, and 360 days at 100°C, 125°C, and 150°C. The effect of non-linear property (Prony series) evolution of underfills on the FCBGA (Flip Chip Ball Grid Array) package reliability has been evaluated. The quarter FCBGA package is modeled from −40°C to 125°C. The results show that the flip-chip plastic work per unit volume of pristine-linear-elastic constitute model underfill FCBGA was much lower compared to pristine-viscoelastic underfill model FCBGA. Results show the importance of considering the non-linear underfill properties instead of linear properties.\",\"PeriodicalId\":117260,\"journal\":{\"name\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ipack2022-97433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2022-97433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

汽车引擎盖下的电子设备长期处于150至200°C的温度范围内。芯片与衬底之间的热膨胀系数不匹配导致焊点在高温下工作时出现疲劳失效。下填料为倒装芯片凸起提供额外的支撑,提高了疲劳寿命,减少了焊点应变。高温下填土需要模型和材料降解数据。下填土非线性本构行为的演化对钎料球的影响以及下填土粘弹性行为演化的研究尚未得到深入的研究。本文测量了两个底填体在持续高温运行下1年内的特性演变。在100°C、125°C和150°C条件下,老化数据分别为30、60、120、240和360天。研究了下填料非线性特性(proony级数)演化对倒装球栅阵列封装可靠性的影响。四分之一FCBGA封装的建模温度为- 40°C至125°C。结果表明:原始-线弹性结构下填体FCBGA的单位体积倒芯片塑性功明显低于原始-粘弹性结构下填体FCBGA;结果表明,考虑非线性下填体特性比考虑线性特性更重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Underfill Degradation and Its Effect on FCBGA Package Reliability Under High-Temperature Operation
The automotive underhood electronics are subjected to temperatures in the range of 150 to 200°C for prolonged periods. The coefficient of thermal expansion mismatch between the chip and the substrate results in the fatigue-failure of solder joints when operating at high temperatures. Underfills provide extra support to the flip-chip bumps, enhancing the fatigue life and reducing the solder joint strains. Models and material degradation data are needed for the underfills exposed to high temperatures. The effect of the evolution of non-linear constitutive behavior of underfills on the solder balls and the study of the evolution of viscoelastic behavior of underfills have not been studied. In this paper, the evolution of underfill properties over 1-year has been measured for two underfills at sustained high-temperature operation. The aging data has been reported at 30, 60, 120, 240, and 360 days at 100°C, 125°C, and 150°C. The effect of non-linear property (Prony series) evolution of underfills on the FCBGA (Flip Chip Ball Grid Array) package reliability has been evaluated. The quarter FCBGA package is modeled from −40°C to 125°C. The results show that the flip-chip plastic work per unit volume of pristine-linear-elastic constitute model underfill FCBGA was much lower compared to pristine-viscoelastic underfill model FCBGA. Results show the importance of considering the non-linear underfill properties instead of linear properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信