{"title":"隧道场效应管器件、8T SRAM单元和感测放大器中单阱诱导随机电报噪声的研究","authors":"M. Fan, V. Hu, Yin-Nien Chen, P. Su, C. Chuang","doi":"10.1109/IRPS.2013.6532068","DOIUrl":null,"url":null,"abstract":"This paper analyzes the impacts of Random Telegraph Noise (RTN) caused by a single acceptor-type trap on Tunnel FET (TFET) based devices, 8T SRAM cell and sense amplifiers. 3D atomistic TCAD simulations accounting for the impact of localized/negatively-charged trap are utilized to assess the dependence of RTN amplitude (ΔID/ID) on trap location and device geometry. Our results indicate that significant RTN impact occurs for trap located near the tunneling junction. The device design strategies (thinner EOT, Wfin and longer Leff) to improve TFET device characteristics are found to increase the susceptibility to RTN. Furthermore, TFET-based standard 8T SRAM cell and several commonly used sense amplifiers including Current Latch Sense Amplifier (CLSA), Voltage Latch Sense Amplifier (VLSA), and single-ended large-signal inverter sense amplifier are examined using atomistic 3D TCAD mixed-mode simulations. The presence of RTN is shown to cause extra ~16% variations in cell stability (at Vdd = 0.3V) and additional ~80mV variation in offset voltage for sense amplifiers at Vdd = 0.5V.","PeriodicalId":138206,"journal":{"name":"2013 IEEE International Reliability Physics Symposium (IRPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Investigation of single-trap-induced random telegraph noise for tunnel FET based devices, 8T SRAM cell, and sense amplifiers\",\"authors\":\"M. Fan, V. Hu, Yin-Nien Chen, P. Su, C. Chuang\",\"doi\":\"10.1109/IRPS.2013.6532068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the impacts of Random Telegraph Noise (RTN) caused by a single acceptor-type trap on Tunnel FET (TFET) based devices, 8T SRAM cell and sense amplifiers. 3D atomistic TCAD simulations accounting for the impact of localized/negatively-charged trap are utilized to assess the dependence of RTN amplitude (ΔID/ID) on trap location and device geometry. Our results indicate that significant RTN impact occurs for trap located near the tunneling junction. The device design strategies (thinner EOT, Wfin and longer Leff) to improve TFET device characteristics are found to increase the susceptibility to RTN. Furthermore, TFET-based standard 8T SRAM cell and several commonly used sense amplifiers including Current Latch Sense Amplifier (CLSA), Voltage Latch Sense Amplifier (VLSA), and single-ended large-signal inverter sense amplifier are examined using atomistic 3D TCAD mixed-mode simulations. The presence of RTN is shown to cause extra ~16% variations in cell stability (at Vdd = 0.3V) and additional ~80mV variation in offset voltage for sense amplifiers at Vdd = 0.5V.\",\"PeriodicalId\":138206,\"journal\":{\"name\":\"2013 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2013.6532068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2013.6532068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of single-trap-induced random telegraph noise for tunnel FET based devices, 8T SRAM cell, and sense amplifiers
This paper analyzes the impacts of Random Telegraph Noise (RTN) caused by a single acceptor-type trap on Tunnel FET (TFET) based devices, 8T SRAM cell and sense amplifiers. 3D atomistic TCAD simulations accounting for the impact of localized/negatively-charged trap are utilized to assess the dependence of RTN amplitude (ΔID/ID) on trap location and device geometry. Our results indicate that significant RTN impact occurs for trap located near the tunneling junction. The device design strategies (thinner EOT, Wfin and longer Leff) to improve TFET device characteristics are found to increase the susceptibility to RTN. Furthermore, TFET-based standard 8T SRAM cell and several commonly used sense amplifiers including Current Latch Sense Amplifier (CLSA), Voltage Latch Sense Amplifier (VLSA), and single-ended large-signal inverter sense amplifier are examined using atomistic 3D TCAD mixed-mode simulations. The presence of RTN is shown to cause extra ~16% variations in cell stability (at Vdd = 0.3V) and additional ~80mV variation in offset voltage for sense amplifiers at Vdd = 0.5V.