隧道场效应管器件、8T SRAM单元和感测放大器中单阱诱导随机电报噪声的研究

M. Fan, V. Hu, Yin-Nien Chen, P. Su, C. Chuang
{"title":"隧道场效应管器件、8T SRAM单元和感测放大器中单阱诱导随机电报噪声的研究","authors":"M. Fan, V. Hu, Yin-Nien Chen, P. Su, C. Chuang","doi":"10.1109/IRPS.2013.6532068","DOIUrl":null,"url":null,"abstract":"This paper analyzes the impacts of Random Telegraph Noise (RTN) caused by a single acceptor-type trap on Tunnel FET (TFET) based devices, 8T SRAM cell and sense amplifiers. 3D atomistic TCAD simulations accounting for the impact of localized/negatively-charged trap are utilized to assess the dependence of RTN amplitude (ΔID/ID) on trap location and device geometry. Our results indicate that significant RTN impact occurs for trap located near the tunneling junction. The device design strategies (thinner EOT, Wfin and longer Leff) to improve TFET device characteristics are found to increase the susceptibility to RTN. Furthermore, TFET-based standard 8T SRAM cell and several commonly used sense amplifiers including Current Latch Sense Amplifier (CLSA), Voltage Latch Sense Amplifier (VLSA), and single-ended large-signal inverter sense amplifier are examined using atomistic 3D TCAD mixed-mode simulations. The presence of RTN is shown to cause extra ~16% variations in cell stability (at Vdd = 0.3V) and additional ~80mV variation in offset voltage for sense amplifiers at Vdd = 0.5V.","PeriodicalId":138206,"journal":{"name":"2013 IEEE International Reliability Physics Symposium (IRPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Investigation of single-trap-induced random telegraph noise for tunnel FET based devices, 8T SRAM cell, and sense amplifiers\",\"authors\":\"M. Fan, V. Hu, Yin-Nien Chen, P. Su, C. Chuang\",\"doi\":\"10.1109/IRPS.2013.6532068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the impacts of Random Telegraph Noise (RTN) caused by a single acceptor-type trap on Tunnel FET (TFET) based devices, 8T SRAM cell and sense amplifiers. 3D atomistic TCAD simulations accounting for the impact of localized/negatively-charged trap are utilized to assess the dependence of RTN amplitude (ΔID/ID) on trap location and device geometry. Our results indicate that significant RTN impact occurs for trap located near the tunneling junction. The device design strategies (thinner EOT, Wfin and longer Leff) to improve TFET device characteristics are found to increase the susceptibility to RTN. Furthermore, TFET-based standard 8T SRAM cell and several commonly used sense amplifiers including Current Latch Sense Amplifier (CLSA), Voltage Latch Sense Amplifier (VLSA), and single-ended large-signal inverter sense amplifier are examined using atomistic 3D TCAD mixed-mode simulations. The presence of RTN is shown to cause extra ~16% variations in cell stability (at Vdd = 0.3V) and additional ~80mV variation in offset voltage for sense amplifiers at Vdd = 0.5V.\",\"PeriodicalId\":138206,\"journal\":{\"name\":\"2013 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2013.6532068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2013.6532068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文分析了由单一受体型陷阱引起的随机电报噪声(RTN)对基于隧道场效应晶体管(TFET)的器件、8T SRAM单元和感测放大器的影响。考虑局域/负电荷陷阱影响的三维原子TCAD模拟被用来评估RTN振幅(ΔID/ID)对陷阱位置和器件几何形状的依赖。我们的研究结果表明,位于隧道交界处附近的陷阱会产生显著的RTN影响。采用更薄的EOT、Wfin和更长的Leff等器件设计策略来改善TFET器件特性会增加对RTN的敏感性。此外,通过原子三维TCAD混合模式仿真,对基于tfet的标准8T SRAM单元和几种常用的感测放大器,包括电流锁存器感测放大器(CLSA)、电压锁存器感测放大器(VLSA)和单端大信号逆变感测放大器进行了研究。RTN的存在导致电池稳定性(Vdd = 0.3V)额外~16%的变化,Vdd = 0.5V时感测放大器的失调电压额外~80mV的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of single-trap-induced random telegraph noise for tunnel FET based devices, 8T SRAM cell, and sense amplifiers
This paper analyzes the impacts of Random Telegraph Noise (RTN) caused by a single acceptor-type trap on Tunnel FET (TFET) based devices, 8T SRAM cell and sense amplifiers. 3D atomistic TCAD simulations accounting for the impact of localized/negatively-charged trap are utilized to assess the dependence of RTN amplitude (ΔID/ID) on trap location and device geometry. Our results indicate that significant RTN impact occurs for trap located near the tunneling junction. The device design strategies (thinner EOT, Wfin and longer Leff) to improve TFET device characteristics are found to increase the susceptibility to RTN. Furthermore, TFET-based standard 8T SRAM cell and several commonly used sense amplifiers including Current Latch Sense Amplifier (CLSA), Voltage Latch Sense Amplifier (VLSA), and single-ended large-signal inverter sense amplifier are examined using atomistic 3D TCAD mixed-mode simulations. The presence of RTN is shown to cause extra ~16% variations in cell stability (at Vdd = 0.3V) and additional ~80mV variation in offset voltage for sense amplifiers at Vdd = 0.5V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信