BTI对纳米级CMOS技术中逻辑门的影响

Seyab Khan, S. Hamdioui, H. Kukner, P. Raghavan, F. Catthoor
{"title":"BTI对纳米级CMOS技术中逻辑门的影响","authors":"Seyab Khan, S. Hamdioui, H. Kukner, P. Raghavan, F. Catthoor","doi":"10.1109/DDECS.2012.6219086","DOIUrl":null,"url":null,"abstract":"As semiconductor manufacturing has entered into the nanoscale era, Bias Temperature Instability (BTI) -Negative BTI (NBTI) in PMOS transistors and Positive BTI (PBTI) in NMOS transistors- has become one of the most serious aging mechanisms that reduces reliability of logic gates. This paper presents a simulation-based BTI analysis in both basic (such as NAND and NOR) and complex gates while considering the impact of input's duty cycle, the frequency at which they change, as well as the impact of the stressed transistor location. The simulation results show that the impact of BTI is strongly gate dependent and that in general the impact in complex gates is larger. When considering both NBTI and PBTI for basic gates, the results reveal that for a NOR gate the impact of NBTI is 2.19× higher than that of PBTI; while for a NAND gate, PBTI impact is 1.27× higher than that of NBTI. When considering different input duty cycles and their frequencies, the results show that the higher the duty cycle, the lower NBTI impact and the higher the PBTI impact regardless of the gate types and the frequency; a variation of ±30% duty cycle causes a variation of up to 49% variation in the impact of NBTI and a variation of 16% in the impact of PBTI. For complex gates, the results show similar trends, but with higher impact.","PeriodicalId":131623,"journal":{"name":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"BTI impact on logical gates in nano-scale CMOS technology\",\"authors\":\"Seyab Khan, S. Hamdioui, H. Kukner, P. Raghavan, F. Catthoor\",\"doi\":\"10.1109/DDECS.2012.6219086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As semiconductor manufacturing has entered into the nanoscale era, Bias Temperature Instability (BTI) -Negative BTI (NBTI) in PMOS transistors and Positive BTI (PBTI) in NMOS transistors- has become one of the most serious aging mechanisms that reduces reliability of logic gates. This paper presents a simulation-based BTI analysis in both basic (such as NAND and NOR) and complex gates while considering the impact of input's duty cycle, the frequency at which they change, as well as the impact of the stressed transistor location. The simulation results show that the impact of BTI is strongly gate dependent and that in general the impact in complex gates is larger. When considering both NBTI and PBTI for basic gates, the results reveal that for a NOR gate the impact of NBTI is 2.19× higher than that of PBTI; while for a NAND gate, PBTI impact is 1.27× higher than that of NBTI. When considering different input duty cycles and their frequencies, the results show that the higher the duty cycle, the lower NBTI impact and the higher the PBTI impact regardless of the gate types and the frequency; a variation of ±30% duty cycle causes a variation of up to 49% variation in the impact of NBTI and a variation of 16% in the impact of PBTI. For complex gates, the results show similar trends, but with higher impact.\",\"PeriodicalId\":131623,\"journal\":{\"name\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2012.6219086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2012.6219086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

随着半导体制造进入纳米级时代,偏置温度不稳定性(BTI) - PMOS晶体管的负BTI (NBTI)和NMOS晶体管的正BTI (PBTI) -已成为降低逻辑门可靠性的最严重老化机制之一。本文提出了一个基于仿真的基本(如NAND和NOR)和复杂栅极的BTI分析,同时考虑了输入占空比的影响,它们变化的频率,以及受应力晶体管位置的影响。仿真结果表明,BTI的影响与栅极密切相关,一般情况下,复杂栅极的影响更大。同时考虑NBTI和PBTI对基本栅极的影响,结果表明:对于NOR栅极,NBTI的影响比PBTI高2.19倍;而对于NAND栅极,PBTI的影响比NBTI高1.27倍。在考虑不同输入占空比及其频率时,结果表明,无论何种栅极类型和频率,占空比越高,NBTI影响越小,PBTI影响越大;±30%占空比的变化导致NBTI影响的变化高达49%,PBTI影响的变化高达16%。对于复杂闸门,结果显示出类似的趋势,但影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BTI impact on logical gates in nano-scale CMOS technology
As semiconductor manufacturing has entered into the nanoscale era, Bias Temperature Instability (BTI) -Negative BTI (NBTI) in PMOS transistors and Positive BTI (PBTI) in NMOS transistors- has become one of the most serious aging mechanisms that reduces reliability of logic gates. This paper presents a simulation-based BTI analysis in both basic (such as NAND and NOR) and complex gates while considering the impact of input's duty cycle, the frequency at which they change, as well as the impact of the stressed transistor location. The simulation results show that the impact of BTI is strongly gate dependent and that in general the impact in complex gates is larger. When considering both NBTI and PBTI for basic gates, the results reveal that for a NOR gate the impact of NBTI is 2.19× higher than that of PBTI; while for a NAND gate, PBTI impact is 1.27× higher than that of NBTI. When considering different input duty cycles and their frequencies, the results show that the higher the duty cycle, the lower NBTI impact and the higher the PBTI impact regardless of the gate types and the frequency; a variation of ±30% duty cycle causes a variation of up to 49% variation in the impact of NBTI and a variation of 16% in the impact of PBTI. For complex gates, the results show similar trends, but with higher impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信