{"title":"Oppermann序列加权脉冲序列的交叉模糊函数","authors":"Momin Jamil, Hans-Jürgen Zepernick, M. Pettersson","doi":"10.1109/ISWCS.2009.5285220","DOIUrl":null,"url":null,"abstract":"The design of integrated radar and communication systems may be based on sets of polyphase sequences such as Oppermann sequences. In this paper, we derive an analytical expression for the cross-ambiguity function of weighted pulse trains with Oppermann sequences. Further, the auto-ambiguity function is deduced from this as a special case. Numerical examples are provided to illustrate the relationship between sequence parameters and performance characteristics.","PeriodicalId":344018,"journal":{"name":"2009 6th International Symposium on Wireless Communication Systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cross-ambiguity function of weighted pulse trains with Oppermann sequences\",\"authors\":\"Momin Jamil, Hans-Jürgen Zepernick, M. Pettersson\",\"doi\":\"10.1109/ISWCS.2009.5285220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of integrated radar and communication systems may be based on sets of polyphase sequences such as Oppermann sequences. In this paper, we derive an analytical expression for the cross-ambiguity function of weighted pulse trains with Oppermann sequences. Further, the auto-ambiguity function is deduced from this as a special case. Numerical examples are provided to illustrate the relationship between sequence parameters and performance characteristics.\",\"PeriodicalId\":344018,\"journal\":{\"name\":\"2009 6th International Symposium on Wireless Communication Systems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 6th International Symposium on Wireless Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2009.5285220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 6th International Symposium on Wireless Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2009.5285220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-ambiguity function of weighted pulse trains with Oppermann sequences
The design of integrated radar and communication systems may be based on sets of polyphase sequences such as Oppermann sequences. In this paper, we derive an analytical expression for the cross-ambiguity function of weighted pulse trains with Oppermann sequences. Further, the auto-ambiguity function is deduced from this as a special case. Numerical examples are provided to illustrate the relationship between sequence parameters and performance characteristics.