AWGN中继信道闭环控制的速率充分条件

Ali A. Zaidi, T. Oechtering, M. Skoglund
{"title":"AWGN中继信道闭环控制的速率充分条件","authors":"Ali A. Zaidi, T. Oechtering, M. Skoglund","doi":"10.1109/ICCA.2010.5524411","DOIUrl":null,"url":null,"abstract":"The problem of remotely controlling an unstable noiseless linear time invariant system with Gaussian distributed initial state over two different noisy relay channels with average power constraints is considered. For information transmission over orthogonal half-duplex and non-orthogonal full-duplex relay channel, we propose a coding/decoding scheme based on Schalkwijk-Kailath scheme. Therefore, we derive conditions on rate which are sufficient for mean square stability of the linearly controlled LTI system over the given relay channels.","PeriodicalId":155562,"journal":{"name":"IEEE ICCA 2010","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Rate sufficient conditions for closed-loop control over AWGN relay channels\",\"authors\":\"Ali A. Zaidi, T. Oechtering, M. Skoglund\",\"doi\":\"10.1109/ICCA.2010.5524411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of remotely controlling an unstable noiseless linear time invariant system with Gaussian distributed initial state over two different noisy relay channels with average power constraints is considered. For information transmission over orthogonal half-duplex and non-orthogonal full-duplex relay channel, we propose a coding/decoding scheme based on Schalkwijk-Kailath scheme. Therefore, we derive conditions on rate which are sufficient for mean square stability of the linearly controlled LTI system over the given relay channels.\",\"PeriodicalId\":155562,\"journal\":{\"name\":\"IEEE ICCA 2010\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ICCA 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2010.5524411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ICCA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2010.5524411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究了具有高斯分布初始状态的不稳定无噪声线性时不变系统在平均功率约束下的两个不同噪声中继信道上的远程控制问题。针对正交半双工和非正交全双工中继信道上的信息传输,提出了一种基于Schalkwijk-Kailath方案的编解码方案。因此,我们推导了在给定中继信道上线性控制LTI系统均方稳定性的速率条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rate sufficient conditions for closed-loop control over AWGN relay channels
The problem of remotely controlling an unstable noiseless linear time invariant system with Gaussian distributed initial state over two different noisy relay channels with average power constraints is considered. For information transmission over orthogonal half-duplex and non-orthogonal full-duplex relay channel, we propose a coding/decoding scheme based on Schalkwijk-Kailath scheme. Therefore, we derive conditions on rate which are sufficient for mean square stability of the linearly controlled LTI system over the given relay channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信