垂直GaN肖特基势垒二极管,具有创纪录的高FOM (1.23GW/cm2),完全由氢化物气相外延生长

Ping Zou, Haofan Wang, Junye Wu, Zeliang Liao, Shuangwu Huang, Z. Zhong, Xiaobo Li, Feng Qiu, Wenrong Zhuang, Longkou Chen, Xinke Liu
{"title":"垂直GaN肖特基势垒二极管,具有创纪录的高FOM (1.23GW/cm2),完全由氢化物气相外延生长","authors":"Ping Zou, Haofan Wang, Junye Wu, Zeliang Liao, Shuangwu Huang, Z. Zhong, Xiaobo Li, Feng Qiu, Wenrong Zhuang, Longkou Chen, Xinke Liu","doi":"10.1109/ISPSD57135.2023.10147551","DOIUrl":null,"url":null,"abstract":"For most of the vertical power devices, the n-GaN drift layers were fabricated by Metal Organic Chemical Vapor Deposition (MOCVD), which would unintentionally introduce carbon atoms related to deep levels within the band gap of the GaN epitaxial layer1, 2, 3. Further, in order to reduce the power consumption, many works have been done to reduce the on-resistance ($R_{ON}$) and turn-on voltage ($V_{ON}$) of devices4, 5, 6. In this work, high quality n-GaN drift layer with low carbon impurity concentration grown by Hydride Vapor Phase Epitaxy (HVPE) was first demonstrated. Also, indium tin oxide (ITO) technology and O2 plasma treatment (OPT) were employed to achieve the $R_{ON}(1.24\\ \\mathrm{m}\\Omega\\cdot \\text{cm}^{2})$ and $V_{ON}$ (0.37 V) for the ∼1.2 kV Schottky barrier diode.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical GaN Schottky Barrier Diode with Record High FOM (1.23GW/cm2) Fully Grown by Hydride Vapor Phase Epitaxy\",\"authors\":\"Ping Zou, Haofan Wang, Junye Wu, Zeliang Liao, Shuangwu Huang, Z. Zhong, Xiaobo Li, Feng Qiu, Wenrong Zhuang, Longkou Chen, Xinke Liu\",\"doi\":\"10.1109/ISPSD57135.2023.10147551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For most of the vertical power devices, the n-GaN drift layers were fabricated by Metal Organic Chemical Vapor Deposition (MOCVD), which would unintentionally introduce carbon atoms related to deep levels within the band gap of the GaN epitaxial layer1, 2, 3. Further, in order to reduce the power consumption, many works have been done to reduce the on-resistance ($R_{ON}$) and turn-on voltage ($V_{ON}$) of devices4, 5, 6. In this work, high quality n-GaN drift layer with low carbon impurity concentration grown by Hydride Vapor Phase Epitaxy (HVPE) was first demonstrated. Also, indium tin oxide (ITO) technology and O2 plasma treatment (OPT) were employed to achieve the $R_{ON}(1.24\\\\ \\\\mathrm{m}\\\\Omega\\\\cdot \\\\text{cm}^{2})$ and $V_{ON}$ (0.37 V) for the ∼1.2 kV Schottky barrier diode.\",\"PeriodicalId\":344266,\"journal\":{\"name\":\"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD57135.2023.10147551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于大多数垂直功率器件,n-GaN漂移层是通过金属有机化学气相沉积(MOCVD)制造的,这会无意中在GaN外延层的带隙内引入与深能级相关的碳原子1,2,3。此外,为了降低功耗,已经做了很多工作来降低器件4,5,6的导通电阻($R_{ON}$)和导通电压($V_{ON}$)。本文首次证明了利用氢化物气相外延技术(HVPE)生长出低碳杂质浓度的高质量n-GaN漂移层。此外,采用氧化铟锡(ITO)技术和氧等离子体处理(OPT)实现了$R_{ON}(1.24\ \ mathm {m}\Omega\cdot \text{cm}^{2})$和$V_{ON}$ (0.37 V)的肖特基势垒二极管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertical GaN Schottky Barrier Diode with Record High FOM (1.23GW/cm2) Fully Grown by Hydride Vapor Phase Epitaxy
For most of the vertical power devices, the n-GaN drift layers were fabricated by Metal Organic Chemical Vapor Deposition (MOCVD), which would unintentionally introduce carbon atoms related to deep levels within the band gap of the GaN epitaxial layer1, 2, 3. Further, in order to reduce the power consumption, many works have been done to reduce the on-resistance ($R_{ON}$) and turn-on voltage ($V_{ON}$) of devices4, 5, 6. In this work, high quality n-GaN drift layer with low carbon impurity concentration grown by Hydride Vapor Phase Epitaxy (HVPE) was first demonstrated. Also, indium tin oxide (ITO) technology and O2 plasma treatment (OPT) were employed to achieve the $R_{ON}(1.24\ \mathrm{m}\Omega\cdot \text{cm}^{2})$ and $V_{ON}$ (0.37 V) for the ∼1.2 kV Schottky barrier diode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信