一种低功耗、电荷敏感前置放大器,集成了硅纳米线生物传感器

Abhiroop Bhattacharjee, Kavindra Kandpal
{"title":"一种低功耗、电荷敏感前置放大器,集成了硅纳米线生物传感器","authors":"Abhiroop Bhattacharjee, Kavindra Kandpal","doi":"10.1109/LAEDC51812.2021.9437913","DOIUrl":null,"url":null,"abstract":"Charge amplifiers, characterized by their charge-sensitivity or charge gain, are essential components of a transducer-interfacing system that amplify charge signals emerging from various sensors and convert them into voltage signals. Today, with increased scaling of MOSFETs, it becomes challenging to obtain the charge amplifiers with high charge sensitivity and low power. Furthermore, if the charge amplifier is to be operated at lower bandwidth, then obtaining low noise at higher charge sensitivity is also difficult. In this paper, the authors propose a novel design of a charge-sensitive preamplifier in 90 nm CMOS technology that can be operated at the frequency range of 10 Hz-10 kHz, suitable for biosignals at lower frequencies. The opamp in the preamplifier is designed to have a folded-cascode structure with composite cascoding at its input transistors for low power operation. A feedback resistance of 185.20 GΩ for the preamplifier is actively realized using long-channel cascode MOSFET stage in the opamp, thereby eliminating the need for a large value of passive resistance on-chip. The preamplifier has a high charge sensitivity of 8.875 mV/fC at a low power consumption of 214.32 nW with input-referred noise of 256.89 μV for the bandwidth 10 Hz-10 kHz. The preamplifier operation is verified by interfacing the model of the preamplifier with the small-signal equivalent of a SPICE model of a Silicon Nanowire Field-effect Transistor (SiNW-FET) based biosensor which was proposed for impedimetric sensing of biomolecules.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low power, charge-sensitive preamplifier integrated with a silicon nanowire biosensor\",\"authors\":\"Abhiroop Bhattacharjee, Kavindra Kandpal\",\"doi\":\"10.1109/LAEDC51812.2021.9437913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Charge amplifiers, characterized by their charge-sensitivity or charge gain, are essential components of a transducer-interfacing system that amplify charge signals emerging from various sensors and convert them into voltage signals. Today, with increased scaling of MOSFETs, it becomes challenging to obtain the charge amplifiers with high charge sensitivity and low power. Furthermore, if the charge amplifier is to be operated at lower bandwidth, then obtaining low noise at higher charge sensitivity is also difficult. In this paper, the authors propose a novel design of a charge-sensitive preamplifier in 90 nm CMOS technology that can be operated at the frequency range of 10 Hz-10 kHz, suitable for biosignals at lower frequencies. The opamp in the preamplifier is designed to have a folded-cascode structure with composite cascoding at its input transistors for low power operation. A feedback resistance of 185.20 GΩ for the preamplifier is actively realized using long-channel cascode MOSFET stage in the opamp, thereby eliminating the need for a large value of passive resistance on-chip. The preamplifier has a high charge sensitivity of 8.875 mV/fC at a low power consumption of 214.32 nW with input-referred noise of 256.89 μV for the bandwidth 10 Hz-10 kHz. The preamplifier operation is verified by interfacing the model of the preamplifier with the small-signal equivalent of a SPICE model of a Silicon Nanowire Field-effect Transistor (SiNW-FET) based biosensor which was proposed for impedimetric sensing of biomolecules.\",\"PeriodicalId\":112590,\"journal\":{\"name\":\"2021 IEEE Latin America Electron Devices Conference (LAEDC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin America Electron Devices Conference (LAEDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAEDC51812.2021.9437913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAEDC51812.2021.9437913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电荷放大器以其电荷灵敏度或电荷增益为特征,是传感器接口系统的重要组成部分,它可以放大来自各种传感器的电荷信号并将其转换为电压信号。今天,随着mosfet规模的增加,获得高电荷灵敏度和低功率的电荷放大器变得具有挑战性。此外,如果要在较低的带宽下工作,那么在较高的电荷灵敏度下获得低噪声也是困难的。在本文中,作者提出了一种新颖的90 nm CMOS技术电荷敏感前置放大器的设计,可以在10 Hz-10 kHz的频率范围内工作,适用于低频的生物信号。前置放大器中的运放设计为折叠级联编码结构,其输入晶体管采用复合级联编码,以实现低功耗工作。前置放大器的反馈电阻185.20 GΩ是通过在运放中使用长通道级联MOSFET级主动实现的,从而消除了片上无源电阻大值的需要。前置放大器具有8.875 mV/fC的高电荷灵敏度,低功耗为214.32 nW,带宽为10 Hz-10 kHz,输入参考噪声为256.89 μV。通过将前置放大器模型与基于硅纳米线场效应晶体管(SiNW-FET)的生物传感器的小信号等效SPICE模型相连接,验证了前置放大器的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low power, charge-sensitive preamplifier integrated with a silicon nanowire biosensor
Charge amplifiers, characterized by their charge-sensitivity or charge gain, are essential components of a transducer-interfacing system that amplify charge signals emerging from various sensors and convert them into voltage signals. Today, with increased scaling of MOSFETs, it becomes challenging to obtain the charge amplifiers with high charge sensitivity and low power. Furthermore, if the charge amplifier is to be operated at lower bandwidth, then obtaining low noise at higher charge sensitivity is also difficult. In this paper, the authors propose a novel design of a charge-sensitive preamplifier in 90 nm CMOS technology that can be operated at the frequency range of 10 Hz-10 kHz, suitable for biosignals at lower frequencies. The opamp in the preamplifier is designed to have a folded-cascode structure with composite cascoding at its input transistors for low power operation. A feedback resistance of 185.20 GΩ for the preamplifier is actively realized using long-channel cascode MOSFET stage in the opamp, thereby eliminating the need for a large value of passive resistance on-chip. The preamplifier has a high charge sensitivity of 8.875 mV/fC at a low power consumption of 214.32 nW with input-referred noise of 256.89 μV for the bandwidth 10 Hz-10 kHz. The preamplifier operation is verified by interfacing the model of the preamplifier with the small-signal equivalent of a SPICE model of a Silicon Nanowire Field-effect Transistor (SiNW-FET) based biosensor which was proposed for impedimetric sensing of biomolecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信