G. Putrino, A. Keating, M. Martyniuk, L. Faraone, J. Dell
{"title":"微悬臂作为探测氢气的平台","authors":"G. Putrino, A. Keating, M. Martyniuk, L. Faraone, J. Dell","doi":"10.1109/COMMAD.2014.7038690","DOIUrl":null,"url":null,"abstract":"The nanomechanical movements of microcantilevers are a unique tool for the detection of various chemicals. When a microcantilever is functionalized with a surface which specifically adsorbs the chemical of interest, the resulting surface stress will bend the microcantilever. The measurement of this bending can provide an accurate measure of the concentration of the chemical of interest. Here we consider the use of microcantilevers to detect hydrogen under ambient atmospheric conditions. We find that nanomechanical movements of a palladium/silicon nitride cantilever tip correspond to sub-milliTorr changes in the partial pressure of hydrogen in air.","PeriodicalId":175863,"journal":{"name":"2014 Conference on Optoelectronic and Microelectronic Materials & Devices","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Microcantilevers as a platform for the detection of hydrogen\",\"authors\":\"G. Putrino, A. Keating, M. Martyniuk, L. Faraone, J. Dell\",\"doi\":\"10.1109/COMMAD.2014.7038690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nanomechanical movements of microcantilevers are a unique tool for the detection of various chemicals. When a microcantilever is functionalized with a surface which specifically adsorbs the chemical of interest, the resulting surface stress will bend the microcantilever. The measurement of this bending can provide an accurate measure of the concentration of the chemical of interest. Here we consider the use of microcantilevers to detect hydrogen under ambient atmospheric conditions. We find that nanomechanical movements of a palladium/silicon nitride cantilever tip correspond to sub-milliTorr changes in the partial pressure of hydrogen in air.\",\"PeriodicalId\":175863,\"journal\":{\"name\":\"2014 Conference on Optoelectronic and Microelectronic Materials & Devices\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Conference on Optoelectronic and Microelectronic Materials & Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMMAD.2014.7038690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Conference on Optoelectronic and Microelectronic Materials & Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2014.7038690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microcantilevers as a platform for the detection of hydrogen
The nanomechanical movements of microcantilevers are a unique tool for the detection of various chemicals. When a microcantilever is functionalized with a surface which specifically adsorbs the chemical of interest, the resulting surface stress will bend the microcantilever. The measurement of this bending can provide an accurate measure of the concentration of the chemical of interest. Here we consider the use of microcantilevers to detect hydrogen under ambient atmospheric conditions. We find that nanomechanical movements of a palladium/silicon nitride cantilever tip correspond to sub-milliTorr changes in the partial pressure of hydrogen in air.