在FPGA上实现了一种利用伊辛自旋模型求解组合优化问题的新计算架构

Y. Kihara, M. Ito, T. Saito, M. Shiomura, S. Sakai, J. Shirakashi
{"title":"在FPGA上实现了一种利用伊辛自旋模型求解组合优化问题的新计算架构","authors":"Y. Kihara, M. Ito, T. Saito, M. Shiomura, S. Sakai, J. Shirakashi","doi":"10.1109/NANO.2017.8117327","DOIUrl":null,"url":null,"abstract":"Recently, the new computing architecture using Ising spin model has been attracting considerable attention. It is well known that the Ising spin model represents the physical properties of ferromagnetic materials in terms of statistical mechanics. In this model, the spin states are varied in order to minimize the system energy automatically, by the interaction between connected adjacent spins. The new computing scheme maps combinatorial optimization problems based on Ising model and solves these problems by using ground state search operations exploiting its convergence property. In this report, a new computing architecture using Ising spin model was implemented using field-programmable gate array (FPGA), and Ising computing using FPGA was investigated to solve combinatorial optimization problems.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A new computing architecture using Ising spin model implemented on FPGA for solving combinatorial optimization problems\",\"authors\":\"Y. Kihara, M. Ito, T. Saito, M. Shiomura, S. Sakai, J. Shirakashi\",\"doi\":\"10.1109/NANO.2017.8117327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the new computing architecture using Ising spin model has been attracting considerable attention. It is well known that the Ising spin model represents the physical properties of ferromagnetic materials in terms of statistical mechanics. In this model, the spin states are varied in order to minimize the system energy automatically, by the interaction between connected adjacent spins. The new computing scheme maps combinatorial optimization problems based on Ising model and solves these problems by using ground state search operations exploiting its convergence property. In this report, a new computing architecture using Ising spin model was implemented using field-programmable gate array (FPGA), and Ising computing using FPGA was investigated to solve combinatorial optimization problems.\",\"PeriodicalId\":292399,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2017.8117327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2017.8117327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

近年来,利用伊辛自旋模型的新型计算体系结构引起了人们的广泛关注。众所周知,伊辛自旋模型从统计力学的角度描述了铁磁材料的物理性质。在该模型中,自旋状态的变化是为了通过连接的相邻自旋之间的相互作用自动地使系统能量最小化。新的计算方案映射了基于伊辛模型的组合优化问题,并利用其收敛性利用基态搜索运算求解组合优化问题。本文利用现场可编程门阵列(FPGA)实现了一种新的基于Ising自旋模型的计算体系结构,并研究了基于FPGA的Ising计算来解决组合优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new computing architecture using Ising spin model implemented on FPGA for solving combinatorial optimization problems
Recently, the new computing architecture using Ising spin model has been attracting considerable attention. It is well known that the Ising spin model represents the physical properties of ferromagnetic materials in terms of statistical mechanics. In this model, the spin states are varied in order to minimize the system energy automatically, by the interaction between connected adjacent spins. The new computing scheme maps combinatorial optimization problems based on Ising model and solves these problems by using ground state search operations exploiting its convergence property. In this report, a new computing architecture using Ising spin model was implemented using field-programmable gate array (FPGA), and Ising computing using FPGA was investigated to solve combinatorial optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信