关于RHP扇区的多项式零不相容

D. Casagrande, W. Krajewski, U. Viaro
{"title":"关于RHP扇区的多项式零不相容","authors":"D. Casagrande, W. Krajewski, U. Viaro","doi":"10.1109/MMAR.2018.8485809","DOIUrl":null,"url":null,"abstract":"Simple conditions based on generalisations of the Routh-Hurwitz and Mikhailov criteria that ensure the absence of polynomial roots in an RHP sector straddling the positive real semi-axis ($\\mathcal{S}$-stability) are presented. In particular, it is shown that $\\mathcal{S}$-stability is ensured if the phase variation of a suitable power of the original $n$ th-degree characteristic polynomial is equal to $n\\pi/2$, which implies that the zeros of the real and imaginary parts of this power must satisfy an interlacing property similar to the interlacing property satisfied by Hurwitz polynomials according to the classic Hermite-Biehler theorem. The condition can be checked by means of Sturm sequences. Examples show how the proposed methods operate.","PeriodicalId":201658,"journal":{"name":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Polynomial Zero Exclusion from an RHP Sector\",\"authors\":\"D. Casagrande, W. Krajewski, U. Viaro\",\"doi\":\"10.1109/MMAR.2018.8485809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple conditions based on generalisations of the Routh-Hurwitz and Mikhailov criteria that ensure the absence of polynomial roots in an RHP sector straddling the positive real semi-axis ($\\\\mathcal{S}$-stability) are presented. In particular, it is shown that $\\\\mathcal{S}$-stability is ensured if the phase variation of a suitable power of the original $n$ th-degree characteristic polynomial is equal to $n\\\\pi/2$, which implies that the zeros of the real and imaginary parts of this power must satisfy an interlacing property similar to the interlacing property satisfied by Hurwitz polynomials according to the classic Hermite-Biehler theorem. The condition can be checked by means of Sturm sequences. Examples show how the proposed methods operate.\",\"PeriodicalId\":201658,\"journal\":{\"name\":\"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2018.8485809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2018.8485809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于Routh-Hurwitz和Mikhailov准则的推广,给出了跨越正实半轴的RHP扇区不存在多项式根的简单条件($\mathcal{S}$-稳定性)。特别地,我们证明了$\mathcal{S}$的稳定性,如果原始$n$ th次特征多项式的一个合适的幂次的相位变化等于$n\pi/2$,这意味着该幂次的实部和虚部的零点必须满足类似于经典Hermite-Biehler定理中Hurwitz多项式所满足的交错性质。该条件可以通过Sturm序列来检验。示例展示了所建议的方法是如何操作的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Polynomial Zero Exclusion from an RHP Sector
Simple conditions based on generalisations of the Routh-Hurwitz and Mikhailov criteria that ensure the absence of polynomial roots in an RHP sector straddling the positive real semi-axis ($\mathcal{S}$-stability) are presented. In particular, it is shown that $\mathcal{S}$-stability is ensured if the phase variation of a suitable power of the original $n$ th-degree characteristic polynomial is equal to $n\pi/2$, which implies that the zeros of the real and imaginary parts of this power must satisfy an interlacing property similar to the interlacing property satisfied by Hurwitz polynomials according to the classic Hermite-Biehler theorem. The condition can be checked by means of Sturm sequences. Examples show how the proposed methods operate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信