Qiming Shao, Guoqiang Yu, L. Pan, X. Che, Yabin Fan, K. Murata, Q. He, T. Nie, X. Kou, Kang L. Wang
{"title":"拓扑绝缘体/CoFeB双分子层的高室温电荷自旋转换效率","authors":"Qiming Shao, Guoqiang Yu, L. Pan, X. Che, Yabin Fan, K. Murata, Q. He, T. Nie, X. Kou, Kang L. Wang","doi":"10.1109/DRC.2018.8442225","DOIUrl":null,"url":null,"abstract":"Heavy metals and topological insulators are promising materials for converting charge current into spin current for efficient manipulation of magnetization states in magnetic devices [1]–[5]. One of the most important parameters is the charge-to-spin conversion (CS) efficiency. Improving CS efficiency is critical for reducing write current of the emerging nonvolatile memory technology, spin-orbit torque MRAM (SOT-MRAM) [2], which provides comparable speed with SRAM but with a much higher memory capacity. Here, we measure CS efficiency in various topological insulators (TIs) using second-harmonic method (2eo-method) and obtain a record-high value 8.33±0.65 for insulating (BiSb)2 Te3 at room temperature. We first establish the consistency of CS efficiency obtained between spin-torque ferromagnetic resonance (ST-FMR) and 2eo-method. Then, we systematically investigate the CS efficiency in a bilayer consisting of a metallic Bi2Se3 and a CoFeB thin film using 2eo-method. By tuning the Fermi level of TI layer into bulk band gap using (BiSb)2 Te3, we improve the CS efficiency by an order of magnitude.","PeriodicalId":269641,"journal":{"name":"2018 76th Device Research Conference (DRC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Large Room Temperature Charge-to-Spin Conversion Efficiency in Topological Insulator/CoFeB bilayers\",\"authors\":\"Qiming Shao, Guoqiang Yu, L. Pan, X. Che, Yabin Fan, K. Murata, Q. He, T. Nie, X. Kou, Kang L. Wang\",\"doi\":\"10.1109/DRC.2018.8442225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy metals and topological insulators are promising materials for converting charge current into spin current for efficient manipulation of magnetization states in magnetic devices [1]–[5]. One of the most important parameters is the charge-to-spin conversion (CS) efficiency. Improving CS efficiency is critical for reducing write current of the emerging nonvolatile memory technology, spin-orbit torque MRAM (SOT-MRAM) [2], which provides comparable speed with SRAM but with a much higher memory capacity. Here, we measure CS efficiency in various topological insulators (TIs) using second-harmonic method (2eo-method) and obtain a record-high value 8.33±0.65 for insulating (BiSb)2 Te3 at room temperature. We first establish the consistency of CS efficiency obtained between spin-torque ferromagnetic resonance (ST-FMR) and 2eo-method. Then, we systematically investigate the CS efficiency in a bilayer consisting of a metallic Bi2Se3 and a CoFeB thin film using 2eo-method. By tuning the Fermi level of TI layer into bulk band gap using (BiSb)2 Te3, we improve the CS efficiency by an order of magnitude.\",\"PeriodicalId\":269641,\"journal\":{\"name\":\"2018 76th Device Research Conference (DRC)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 76th Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2018.8442225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 76th Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2018.8442225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large Room Temperature Charge-to-Spin Conversion Efficiency in Topological Insulator/CoFeB bilayers
Heavy metals and topological insulators are promising materials for converting charge current into spin current for efficient manipulation of magnetization states in magnetic devices [1]–[5]. One of the most important parameters is the charge-to-spin conversion (CS) efficiency. Improving CS efficiency is critical for reducing write current of the emerging nonvolatile memory technology, spin-orbit torque MRAM (SOT-MRAM) [2], which provides comparable speed with SRAM but with a much higher memory capacity. Here, we measure CS efficiency in various topological insulators (TIs) using second-harmonic method (2eo-method) and obtain a record-high value 8.33±0.65 for insulating (BiSb)2 Te3 at room temperature. We first establish the consistency of CS efficiency obtained between spin-torque ferromagnetic resonance (ST-FMR) and 2eo-method. Then, we systematically investigate the CS efficiency in a bilayer consisting of a metallic Bi2Se3 and a CoFeB thin film using 2eo-method. By tuning the Fermi level of TI layer into bulk band gap using (BiSb)2 Te3, we improve the CS efficiency by an order of magnitude.