兴趣点和兴趣区域的整合

Qi Li, Y. Gong, Y. Lu
{"title":"兴趣点和兴趣区域的整合","authors":"Qi Li, Y. Gong, Y. Lu","doi":"10.1109/ChinaSIP.2014.6889266","DOIUrl":null,"url":null,"abstract":"Images consist of different low-level features, such as Points of Interest (POIs) and Regions of Interest (ROIs). A distinction between POIs and ROIs is that the latter ones have intrinsic scale information while the former ones may not have. In this paper, we propose a scheme to integrate these two kinds of image features. The proposed scheme optimizes feature distribution so that the optimized features become more compact. The scheme also assigns scale information to a POI via a stable association between the POI and a certain “nearest” ROI. We test the proposed integration scheme in terms of the repeatability across various imaging transformations. The experimental results demonstrate the effectiveness of the integration scheme.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integration of Points of Interest and Regions of Interest\",\"authors\":\"Qi Li, Y. Gong, Y. Lu\",\"doi\":\"10.1109/ChinaSIP.2014.6889266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images consist of different low-level features, such as Points of Interest (POIs) and Regions of Interest (ROIs). A distinction between POIs and ROIs is that the latter ones have intrinsic scale information while the former ones may not have. In this paper, we propose a scheme to integrate these two kinds of image features. The proposed scheme optimizes feature distribution so that the optimized features become more compact. The scheme also assigns scale information to a POI via a stable association between the POI and a certain “nearest” ROI. We test the proposed integration scheme in terms of the repeatability across various imaging transformations. The experimental results demonstrate the effectiveness of the integration scheme.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像由不同的底层特征组成,如兴趣点(POIs)和兴趣区域(roi)。poi和roi的区别在于后者具有内在的规模信息,而前者可能没有。在本文中,我们提出了一种融合这两种图像特征的方案。该方案对特征分布进行了优化,使优化后的特征更加紧凑。该方案还通过POI和某个“最近”ROI之间的稳定关联,将规模信息分配给POI。我们在各种成像变换的可重复性方面测试了所提出的集成方案。实验结果证明了该集成方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of Points of Interest and Regions of Interest
Images consist of different low-level features, such as Points of Interest (POIs) and Regions of Interest (ROIs). A distinction between POIs and ROIs is that the latter ones have intrinsic scale information while the former ones may not have. In this paper, we propose a scheme to integrate these two kinds of image features. The proposed scheme optimizes feature distribution so that the optimized features become more compact. The scheme also assigns scale information to a POI via a stable association between the POI and a certain “nearest” ROI. We test the proposed integration scheme in terms of the repeatability across various imaging transformations. The experimental results demonstrate the effectiveness of the integration scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信