最小克隆中的多数多项式和其他多项式

Hajime Machida, Tamás Waldhauser
{"title":"最小克隆中的多数多项式和其他多项式","authors":"Hajime Machida, Tamás Waldhauser","doi":"10.1109/ISMVL.2008.38","DOIUrl":null,"url":null,"abstract":"A minimal clone is an atom of the lattice of clones. A minimal function is, briefly saying, a function which generates a minimal clone. For a prime power k we consider the base set with k elements as a finite field GF(k). We present binary idempotent minimal polynomials and ternary majority minimal polynomials over GF(3) and generalize them to minimal polynomials over GF(k) for any prime power k ges3.","PeriodicalId":243752,"journal":{"name":"38th International Symposium on Multiple Valued Logic (ismvl 2008)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Majority and Other Polynomials in Minimal Clones\",\"authors\":\"Hajime Machida, Tamás Waldhauser\",\"doi\":\"10.1109/ISMVL.2008.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A minimal clone is an atom of the lattice of clones. A minimal function is, briefly saying, a function which generates a minimal clone. For a prime power k we consider the base set with k elements as a finite field GF(k). We present binary idempotent minimal polynomials and ternary majority minimal polynomials over GF(3) and generalize them to minimal polynomials over GF(k) for any prime power k ges3.\",\"PeriodicalId\":243752,\"journal\":{\"name\":\"38th International Symposium on Multiple Valued Logic (ismvl 2008)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th International Symposium on Multiple Valued Logic (ismvl 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2008.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th International Symposium on Multiple Valued Logic (ismvl 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2008.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最小克隆是克隆晶格中的一个原子。简单地说,最小函数是生成最小克隆的函数。对于素数幂k,我们考虑有k个元素的基集作为有限域GF(k)。本文给出了GF(3)上的二元幂等极小多项式和三元多数极小多项式,并将它们推广到GF(k)上对任意素数幂k ges3的极小多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Majority and Other Polynomials in Minimal Clones
A minimal clone is an atom of the lattice of clones. A minimal function is, briefly saying, a function which generates a minimal clone. For a prime power k we consider the base set with k elements as a finite field GF(k). We present binary idempotent minimal polynomials and ternary majority minimal polynomials over GF(3) and generalize them to minimal polynomials over GF(k) for any prime power k ges3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信