{"title":"兼容的数字表示","authors":"R. A. Keir","doi":"10.1109/ARITH.1975.6156990","DOIUrl":null,"url":null,"abstract":"A compatible number system for mixed fixed-point and floating-point arithmetic is described in terms of number formats and opcode sequences (for hardwired or microcoded control). This inexpensive system can be as fast as fixed-point arithmetic on integers, is faster than normalized arithmetic in floating point, gets answers identical to those of normalized arithmetic, and automatically satisfies the Algol-60 mixed-mode rules. The central concept is the avoidance of meaningless \"normalization\" following arithmetic operations. Adoption of this system could lead to simpler compilers.","PeriodicalId":360742,"journal":{"name":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Compatible number representations\",\"authors\":\"R. A. Keir\",\"doi\":\"10.1109/ARITH.1975.6156990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compatible number system for mixed fixed-point and floating-point arithmetic is described in terms of number formats and opcode sequences (for hardwired or microcoded control). This inexpensive system can be as fast as fixed-point arithmetic on integers, is faster than normalized arithmetic in floating point, gets answers identical to those of normalized arithmetic, and automatically satisfies the Algol-60 mixed-mode rules. The central concept is the avoidance of meaningless \\\"normalization\\\" following arithmetic operations. Adoption of this system could lead to simpler compilers.\",\"PeriodicalId\":360742,\"journal\":{\"name\":\"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1975-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1975.6156990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1975.6156990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A compatible number system for mixed fixed-point and floating-point arithmetic is described in terms of number formats and opcode sequences (for hardwired or microcoded control). This inexpensive system can be as fast as fixed-point arithmetic on integers, is faster than normalized arithmetic in floating point, gets answers identical to those of normalized arithmetic, and automatically satisfies the Algol-60 mixed-mode rules. The central concept is the avoidance of meaningless "normalization" following arithmetic operations. Adoption of this system could lead to simpler compilers.