{"title":"最小表面效应三自由度微机械臂的设计","authors":"M. Goldfarb, J. Speich","doi":"10.1109/ROBOT.1997.614345","DOIUrl":null,"url":null,"abstract":"This paper describes the fundamental physical motivations for small-scale minimum surface-effect design, and presents a three degree-of-freedom micromanipulator design that incorporates a minimum surface-effect approach. The primary focus of the design is the split-tube flexure, a unique small-scale revolute joint that exhibits a considerably larger range of motion and significantly better multi-axis revolute joint characteristics than a conventional flexure. The development of this joint enables the implementation of a small-scale spatially-loaded revolute joint-based manipulator with well-behaved kinematic characteristics and without the backlash and stick-slip behavior that would otherwise prevent precision control.","PeriodicalId":225473,"journal":{"name":"Proceedings of International Conference on Robotics and Automation","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Design of a minimum surface-effect three degree-of-freedom micromanipulator\",\"authors\":\"M. Goldfarb, J. Speich\",\"doi\":\"10.1109/ROBOT.1997.614345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the fundamental physical motivations for small-scale minimum surface-effect design, and presents a three degree-of-freedom micromanipulator design that incorporates a minimum surface-effect approach. The primary focus of the design is the split-tube flexure, a unique small-scale revolute joint that exhibits a considerably larger range of motion and significantly better multi-axis revolute joint characteristics than a conventional flexure. The development of this joint enables the implementation of a small-scale spatially-loaded revolute joint-based manipulator with well-behaved kinematic characteristics and without the backlash and stick-slip behavior that would otherwise prevent precision control.\",\"PeriodicalId\":225473,\"journal\":{\"name\":\"Proceedings of International Conference on Robotics and Automation\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1997.614345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1997.614345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a minimum surface-effect three degree-of-freedom micromanipulator
This paper describes the fundamental physical motivations for small-scale minimum surface-effect design, and presents a three degree-of-freedom micromanipulator design that incorporates a minimum surface-effect approach. The primary focus of the design is the split-tube flexure, a unique small-scale revolute joint that exhibits a considerably larger range of motion and significantly better multi-axis revolute joint characteristics than a conventional flexure. The development of this joint enables the implementation of a small-scale spatially-loaded revolute joint-based manipulator with well-behaved kinematic characteristics and without the backlash and stick-slip behavior that would otherwise prevent precision control.