一种基于图论的提高成品率的电压分组新技术

Ruijing Shen, S. Tan, Xuexin Liu
{"title":"一种基于图论的提高成品率的电压分组新技术","authors":"Ruijing Shen, S. Tan, Xuexin Liu","doi":"10.1109/ISQED.2012.6187501","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new voltage binning technique to improve yield. Voltage binning technique tries to assign different supply voltages to different chips in order to improve the yield. A novel valid voltage segment concept is proposed, which is determined by the timing and power constraints of chips. Then we develop a formulation to predict the maximum number of bins required under the uniform binning scheme from the distribution of length of valid supply voltage segment. With the new concept, an optimal binning scheme can be modeled as a set-cover problem. A greedy algorithm is developed to solve the set-cover problem in an incremental way. The new method is also extendable to deal with a range of working supply voltages for dynamic voltage scaling under different operation modes (like lower power and high performance modes). Experimental results on some benchmarks in 45nm technology show that the proposed method can correctly predict the upper bound on the number of bins required. The optimal binning scheme can lead to significant saving for the number of bins compared to the uniform one to achieve the same yield with very small CPU cost.","PeriodicalId":205874,"journal":{"name":"Thirteenth International Symposium on Quality Electronic Design (ISQED)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new voltage binning technique for yield improvement based on graph theory\",\"authors\":\"Ruijing Shen, S. Tan, Xuexin Liu\",\"doi\":\"10.1109/ISQED.2012.6187501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new voltage binning technique to improve yield. Voltage binning technique tries to assign different supply voltages to different chips in order to improve the yield. A novel valid voltage segment concept is proposed, which is determined by the timing and power constraints of chips. Then we develop a formulation to predict the maximum number of bins required under the uniform binning scheme from the distribution of length of valid supply voltage segment. With the new concept, an optimal binning scheme can be modeled as a set-cover problem. A greedy algorithm is developed to solve the set-cover problem in an incremental way. The new method is also extendable to deal with a range of working supply voltages for dynamic voltage scaling under different operation modes (like lower power and high performance modes). Experimental results on some benchmarks in 45nm technology show that the proposed method can correctly predict the upper bound on the number of bins required. The optimal binning scheme can lead to significant saving for the number of bins compared to the uniform one to achieve the same yield with very small CPU cost.\",\"PeriodicalId\":205874,\"journal\":{\"name\":\"Thirteenth International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thirteenth International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2012.6187501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirteenth International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2012.6187501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的电压分闸技术来提高成品率。电压分簇技术试图为不同的芯片分配不同的电源电压,以提高成品率。提出了一种新的有效电压段概念,该概念由芯片的时序和功率约束决定。在此基础上,根据有效电源电压段的长度分布,推导出均匀分组方案下所需最大分组数的预测公式。利用这个新概念,最优分组方案可以建模为集合覆盖问题。提出了一种贪心算法,以增量的方式解决集覆盖问题。新方法还可以扩展到处理不同工作模式(如低功耗和高性能模式)下动态电压缩放的工作电源电压范围。在45nm工艺的一些基准测试上的实验结果表明,该方法可以正确地预测所需箱数的上界。与统一的分仓方案相比,最优的分仓方案可以显著节省分仓数量,以非常小的CPU成本实现相同的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new voltage binning technique for yield improvement based on graph theory
In this paper, we propose a new voltage binning technique to improve yield. Voltage binning technique tries to assign different supply voltages to different chips in order to improve the yield. A novel valid voltage segment concept is proposed, which is determined by the timing and power constraints of chips. Then we develop a formulation to predict the maximum number of bins required under the uniform binning scheme from the distribution of length of valid supply voltage segment. With the new concept, an optimal binning scheme can be modeled as a set-cover problem. A greedy algorithm is developed to solve the set-cover problem in an incremental way. The new method is also extendable to deal with a range of working supply voltages for dynamic voltage scaling under different operation modes (like lower power and high performance modes). Experimental results on some benchmarks in 45nm technology show that the proposed method can correctly predict the upper bound on the number of bins required. The optimal binning scheme can lead to significant saving for the number of bins compared to the uniform one to achieve the same yield with very small CPU cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信