基于自然风格变化的人脸识别系统物理模拟攻击

Shengwei An, Y. Yao, Qiuling Xu, Shiqing Ma, Guanhong Tao, Siyuan Cheng, Kaiyuan Zhang, Yingqi Liu, Guangyu Shen, Ian Kelk, Xiangyu Zhang
{"title":"基于自然风格变化的人脸识别系统物理模拟攻击","authors":"Shengwei An, Y. Yao, Qiuling Xu, Shiqing Ma, Guanhong Tao, Siyuan Cheng, Kaiyuan Zhang, Yingqi Liu, Guangyu Shen, Ian Kelk, Xiangyu Zhang","doi":"10.1109/SP46215.2023.10179360","DOIUrl":null,"url":null,"abstract":"This paper presents a novel physical impersonating attack against face recognition systems. It aims at generating consistent style changes across multiple pictures of the attacker under different conditions and poses. Additionally, the style changes are required to be physically realizable by make-up and can induce the intended misclassification. To achieve the goal, we develop novel techniques to embed multiple pictures of the same physical person to vectors in the StyleGAN’s latent space, such that the embedded latent vectors have some implicit correlations to make the search for consistent style changes feasible. Our digital and physical evaluation results show our approach can allow an outsider attacker to successfully impersonate the insiders with consistent and natural changes.","PeriodicalId":439989,"journal":{"name":"2023 IEEE Symposium on Security and Privacy (SP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ImU: Physical Impersonating Attack for Face Recognition System with Natural Style Changes\",\"authors\":\"Shengwei An, Y. Yao, Qiuling Xu, Shiqing Ma, Guanhong Tao, Siyuan Cheng, Kaiyuan Zhang, Yingqi Liu, Guangyu Shen, Ian Kelk, Xiangyu Zhang\",\"doi\":\"10.1109/SP46215.2023.10179360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel physical impersonating attack against face recognition systems. It aims at generating consistent style changes across multiple pictures of the attacker under different conditions and poses. Additionally, the style changes are required to be physically realizable by make-up and can induce the intended misclassification. To achieve the goal, we develop novel techniques to embed multiple pictures of the same physical person to vectors in the StyleGAN’s latent space, such that the embedded latent vectors have some implicit correlations to make the search for consistent style changes feasible. Our digital and physical evaluation results show our approach can allow an outsider attacker to successfully impersonate the insiders with consistent and natural changes.\",\"PeriodicalId\":439989,\"journal\":{\"name\":\"2023 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP46215.2023.10179360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP46215.2023.10179360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种针对人脸识别系统的物理模拟攻击方法。它旨在在不同条件和姿势下的攻击者的多张照片中生成一致的风格变化。此外,样式变化需要通过化妆在物理上实现,并且可能导致预期的错误分类。为了实现这一目标,我们开发了新的技术,将同一个人的多张图片嵌入到StyleGAN潜在空间中的向量中,使得嵌入的潜在向量具有一些隐式相关性,从而使得搜索一致的风格变化变得可行。我们的数字和物理评估结果表明,我们的方法可以允许外部攻击者通过一致和自然的变化成功地模拟内部人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ImU: Physical Impersonating Attack for Face Recognition System with Natural Style Changes
This paper presents a novel physical impersonating attack against face recognition systems. It aims at generating consistent style changes across multiple pictures of the attacker under different conditions and poses. Additionally, the style changes are required to be physically realizable by make-up and can induce the intended misclassification. To achieve the goal, we develop novel techniques to embed multiple pictures of the same physical person to vectors in the StyleGAN’s latent space, such that the embedded latent vectors have some implicit correlations to make the search for consistent style changes feasible. Our digital and physical evaluation results show our approach can allow an outsider attacker to successfully impersonate the insiders with consistent and natural changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信