ESS-IM应用于森林火灾蔓延预测:异构配置的参数调优

Miguel Méndez-Garabetti, G. Bianchini, Paola Caymes-Scutari, M. L. Tardivo
{"title":"ESS-IM应用于森林火灾蔓延预测:异构配置的参数调优","authors":"Miguel Méndez-Garabetti, G. Bianchini, Paola Caymes-Scutari, M. L. Tardivo","doi":"10.1109/SCCC.2016.7836007","DOIUrl":null,"url":null,"abstract":"Forest fires are a critical natural hazard in many regions of the World. For this reason, the prediction of this kind of phenomenon is considered a very important task that involves a high degree of complexity and precision. The ability to predict the forest fire behaviour constitutes an important tool for managers, helping to improve the effectiveness of fire prevention, detection and firefighting resources allocation. For this reason, prediction methods should be configured to operate as efficiently as possible. In this paper, a calibration study of Evolutionary-Statistical System with Island Model's evolutionary parameters is presented (ESS-IM). ESS-IM is a general-parallel uncertainty reduction method applied to the forest fires spread prediction.","PeriodicalId":432676,"journal":{"name":"2016 35th International Conference of the Chilean Computer Science Society (SCCC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ESS-IM applied to forest fire spread prediction: Parameters tuning for a heterogeneous configuration\",\"authors\":\"Miguel Méndez-Garabetti, G. Bianchini, Paola Caymes-Scutari, M. L. Tardivo\",\"doi\":\"10.1109/SCCC.2016.7836007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest fires are a critical natural hazard in many regions of the World. For this reason, the prediction of this kind of phenomenon is considered a very important task that involves a high degree of complexity and precision. The ability to predict the forest fire behaviour constitutes an important tool for managers, helping to improve the effectiveness of fire prevention, detection and firefighting resources allocation. For this reason, prediction methods should be configured to operate as efficiently as possible. In this paper, a calibration study of Evolutionary-Statistical System with Island Model's evolutionary parameters is presented (ESS-IM). ESS-IM is a general-parallel uncertainty reduction method applied to the forest fires spread prediction.\",\"PeriodicalId\":432676,\"journal\":{\"name\":\"2016 35th International Conference of the Chilean Computer Science Society (SCCC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 35th International Conference of the Chilean Computer Science Society (SCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCC.2016.7836007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 35th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2016.7836007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在世界许多地区,森林火灾是一种严重的自然灾害。因此,这种现象的预测被认为是一项非常重要的任务,涉及到高度的复杂性和精度。预测森林火灾行为的能力是管理者的重要工具,有助于提高防火、探测和消防资源分配的有效性。出于这个原因,应该配置预测方法,使其尽可能高效地运行。本文提出了一种基于岛屿模型演化参数的进化统计系统(ESS-IM)标定方法。ESS-IM是一种应用于森林火灾蔓延预测的通用并行不确定性降低方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESS-IM applied to forest fire spread prediction: Parameters tuning for a heterogeneous configuration
Forest fires are a critical natural hazard in many regions of the World. For this reason, the prediction of this kind of phenomenon is considered a very important task that involves a high degree of complexity and precision. The ability to predict the forest fire behaviour constitutes an important tool for managers, helping to improve the effectiveness of fire prevention, detection and firefighting resources allocation. For this reason, prediction methods should be configured to operate as efficiently as possible. In this paper, a calibration study of Evolutionary-Statistical System with Island Model's evolutionary parameters is presented (ESS-IM). ESS-IM is a general-parallel uncertainty reduction method applied to the forest fires spread prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信