具有感知拥塞的片上网络调度程序的任务级流水线多simd增强现实处理器

Gyeonghoon Kim, Seongwook Park, K. Lee, Youchang Kim, Injoon Hong, Kyeongryeol Bong, Dongjoo Shin, Sungpill Choi, Junyoung Park, H. Yoo
{"title":"具有感知拥塞的片上网络调度程序的任务级流水线多simd增强现实处理器","authors":"Gyeonghoon Kim, Seongwook Park, K. Lee, Youchang Kim, Injoon Hong, Kyeongryeol Bong, Dongjoo Shin, Sungpill Choi, Junyoung Park, H. Yoo","doi":"10.1109/CoolChips.2014.6842959","DOIUrl":null,"url":null,"abstract":"A 36 Heterogeneous multicore processor is proposed to accelerate recognition-based markerless augmented reality. To enable a real-time operation of the proposed augmented reality, task-level pipelined multicore architecture with DLP/TLP optimized SIMD processing elements is implemented. In addition, the multicore employs a congestion-aware network-on-chip scheduler for 2D-mesh network-on-chip to support massive internal data transaction caused by task-level pipeline. As a result, it achieves 1.22TOPS peak performance and 1.57TOPS/W energy-efficiency, which are 88% and 76% improvement over a state-of-the-art augmented reality processor, for 30fps 720p test input video.","PeriodicalId":366328,"journal":{"name":"2014 IEEE COOL Chips XVII","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A task-level pipelined many-SIMD augmented reality processor with congestion-aware network-on-chip scheduler\",\"authors\":\"Gyeonghoon Kim, Seongwook Park, K. Lee, Youchang Kim, Injoon Hong, Kyeongryeol Bong, Dongjoo Shin, Sungpill Choi, Junyoung Park, H. Yoo\",\"doi\":\"10.1109/CoolChips.2014.6842959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 36 Heterogeneous multicore processor is proposed to accelerate recognition-based markerless augmented reality. To enable a real-time operation of the proposed augmented reality, task-level pipelined multicore architecture with DLP/TLP optimized SIMD processing elements is implemented. In addition, the multicore employs a congestion-aware network-on-chip scheduler for 2D-mesh network-on-chip to support massive internal data transaction caused by task-level pipeline. As a result, it achieves 1.22TOPS peak performance and 1.57TOPS/W energy-efficiency, which are 88% and 76% improvement over a state-of-the-art augmented reality processor, for 30fps 720p test input video.\",\"PeriodicalId\":366328,\"journal\":{\"name\":\"2014 IEEE COOL Chips XVII\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE COOL Chips XVII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoolChips.2014.6842959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE COOL Chips XVII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoolChips.2014.6842959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种36异构多核处理器来加速基于识别的无标记增强现实。为了实现所提出的增强现实的实时操作,实现了具有DLP/TLP优化的SIMD处理元素的任务级流水线多核架构。此外,多核采用了2d网格片上网络的拥塞感知调度程序,以支持由任务级管道引起的大量内部数据事务。因此,对于30fps 720p测试输入视频,它实现了1.22TOPS峰值性能和1.57TOPS/W能效,比最先进的增强现实处理器分别提高了88%和76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A task-level pipelined many-SIMD augmented reality processor with congestion-aware network-on-chip scheduler
A 36 Heterogeneous multicore processor is proposed to accelerate recognition-based markerless augmented reality. To enable a real-time operation of the proposed augmented reality, task-level pipelined multicore architecture with DLP/TLP optimized SIMD processing elements is implemented. In addition, the multicore employs a congestion-aware network-on-chip scheduler for 2D-mesh network-on-chip to support massive internal data transaction caused by task-level pipeline. As a result, it achieves 1.22TOPS peak performance and 1.57TOPS/W energy-efficiency, which are 88% and 76% improvement over a state-of-the-art augmented reality processor, for 30fps 720p test input video.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信