基于视觉语言嵌入多阶段多模态融合的开放世界驾驶场景分割

Yingjie Niu, Ming Ding, Yuxiao Zhang, Maoning Ge, Hanting Yang, K. Takeda
{"title":"基于视觉语言嵌入多阶段多模态融合的开放世界驾驶场景分割","authors":"Yingjie Niu, Ming Ding, Yuxiao Zhang, Maoning Ge, Hanting Yang, K. Takeda","doi":"10.1109/IV55152.2023.10186652","DOIUrl":null,"url":null,"abstract":"In this study, a pixel-text level multi-stage multi-modality fusion segmentation method is proposed to make the open-world driving scene segmentation more efficient. It can be used for different semantic perceptual needs of autonomous driving scenarios for real-world driving situations. The method can finely segment unseen labels without additional corresponding semantic segmentation labels, only using the existing semantic segmentation data. The proposed method consists of 4 modules. A visual representation embedding module and a segmentation command embedding module are used to extract the driving scene and the segmentation category command. A multi-stage multi-modality fusion module is used to fuse the driving scene visual information and segmentation command text information for different sizes at the pixel-text level. Finally, a cascade segmentation head is used to ground the segmentation command text to the driving scene for encouraging the model to generate corresponding high-quality semantic segmentation results. In the experiment, we first verify the effectiveness of the method for zero-shot segmentation using a popular driving scene segmentation dataset. We also confirm the effectiveness of synonyms unseen label and hierarchy unseen label for the open-world semantic segmentation.","PeriodicalId":195148,"journal":{"name":"2023 IEEE Intelligent Vehicles Symposium (IV)","volume":"82 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-world driving scene segmentation via multi-stage and multi-modality fusion of vision-language embedding\",\"authors\":\"Yingjie Niu, Ming Ding, Yuxiao Zhang, Maoning Ge, Hanting Yang, K. Takeda\",\"doi\":\"10.1109/IV55152.2023.10186652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a pixel-text level multi-stage multi-modality fusion segmentation method is proposed to make the open-world driving scene segmentation more efficient. It can be used for different semantic perceptual needs of autonomous driving scenarios for real-world driving situations. The method can finely segment unseen labels without additional corresponding semantic segmentation labels, only using the existing semantic segmentation data. The proposed method consists of 4 modules. A visual representation embedding module and a segmentation command embedding module are used to extract the driving scene and the segmentation category command. A multi-stage multi-modality fusion module is used to fuse the driving scene visual information and segmentation command text information for different sizes at the pixel-text level. Finally, a cascade segmentation head is used to ground the segmentation command text to the driving scene for encouraging the model to generate corresponding high-quality semantic segmentation results. In the experiment, we first verify the effectiveness of the method for zero-shot segmentation using a popular driving scene segmentation dataset. We also confirm the effectiveness of synonyms unseen label and hierarchy unseen label for the open-world semantic segmentation.\",\"PeriodicalId\":195148,\"journal\":{\"name\":\"2023 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"82 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV55152.2023.10186652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV55152.2023.10186652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高开放世界驾驶场景的分割效率,本文提出了一种像素文本级多阶段多模态融合分割方法。它可以用于自动驾驶场景对真实驾驶情况的不同语义感知需求。该方法仅利用已有的语义分割数据,无需额外添加相应的语义分割标签,即可实现对未见标签的精细分割。该方法由4个模块组成。使用可视化表示嵌入模块和分割命令嵌入模块提取驾驶场景和分割类别命令。采用多阶段多模态融合模块,在像素文本级融合不同尺寸的驾驶场景视觉信息和分割命令文本信息。最后,使用级联分割头将分割命令文本与驾驶场景接地,以激励模型生成相应的高质量语义分割结果。在实验中,我们首先使用一个流行的驾驶场景分割数据集验证了该方法对零镜头分割的有效性。我们还验证了同义词不可见标签和层次不可见标签在开放世界语义分割中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open-world driving scene segmentation via multi-stage and multi-modality fusion of vision-language embedding
In this study, a pixel-text level multi-stage multi-modality fusion segmentation method is proposed to make the open-world driving scene segmentation more efficient. It can be used for different semantic perceptual needs of autonomous driving scenarios for real-world driving situations. The method can finely segment unseen labels without additional corresponding semantic segmentation labels, only using the existing semantic segmentation data. The proposed method consists of 4 modules. A visual representation embedding module and a segmentation command embedding module are used to extract the driving scene and the segmentation category command. A multi-stage multi-modality fusion module is used to fuse the driving scene visual information and segmentation command text information for different sizes at the pixel-text level. Finally, a cascade segmentation head is used to ground the segmentation command text to the driving scene for encouraging the model to generate corresponding high-quality semantic segmentation results. In the experiment, we first verify the effectiveness of the method for zero-shot segmentation using a popular driving scene segmentation dataset. We also confirm the effectiveness of synonyms unseen label and hierarchy unseen label for the open-world semantic segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信