肝脏肿瘤的超声图像检测

B. Shajahan, S. Sudha
{"title":"肝脏肿瘤的超声图像检测","authors":"B. Shajahan, S. Sudha","doi":"10.1109/ICDCSYST.2014.6926196","DOIUrl":null,"url":null,"abstract":"Hepatic tumors are tumors that grows on or in the liver. They are classified into benign and malignant tumors. Hepatocellular carcinoma is the most frequent malignant tumor in the liver. Ultrasound is the first line investigation carried out by the physician for any abnormalities in the liver. The only golden standard for detection of liver tumor is needle biopsy, but it is invasive and causes secondary infection and bleeding at that site. In this work we present a non invasive method for detection of hepatic tumors based on ultrasound images and classification is done to differentiate the tumors in the liver. The proposed method consist of three stages namely segmentation, feature extraction and classification. In the first stage the ultrasound image containing the tumor is segmented using Fuzzy C means clustering algorithm. In the second stage gray level co-occurrence matrix features are extracted from the segmented image and Haralick texture features are extracted. In the third stage consist of training the extracted features using SVM and classification is done for normal and abnormal image. The Fuzzy C means clustering combined with SVM outperforms the other classifiers with a sensitivity of 98%.","PeriodicalId":252016,"journal":{"name":"2014 2nd International Conference on Devices, Circuits and Systems (ICDCS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hepatic tumor detection in ultrasound images\",\"authors\":\"B. Shajahan, S. Sudha\",\"doi\":\"10.1109/ICDCSYST.2014.6926196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hepatic tumors are tumors that grows on or in the liver. They are classified into benign and malignant tumors. Hepatocellular carcinoma is the most frequent malignant tumor in the liver. Ultrasound is the first line investigation carried out by the physician for any abnormalities in the liver. The only golden standard for detection of liver tumor is needle biopsy, but it is invasive and causes secondary infection and bleeding at that site. In this work we present a non invasive method for detection of hepatic tumors based on ultrasound images and classification is done to differentiate the tumors in the liver. The proposed method consist of three stages namely segmentation, feature extraction and classification. In the first stage the ultrasound image containing the tumor is segmented using Fuzzy C means clustering algorithm. In the second stage gray level co-occurrence matrix features are extracted from the segmented image and Haralick texture features are extracted. In the third stage consist of training the extracted features using SVM and classification is done for normal and abnormal image. The Fuzzy C means clustering combined with SVM outperforms the other classifiers with a sensitivity of 98%.\",\"PeriodicalId\":252016,\"journal\":{\"name\":\"2014 2nd International Conference on Devices, Circuits and Systems (ICDCS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on Devices, Circuits and Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCSYST.2014.6926196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on Devices, Circuits and Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSYST.2014.6926196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

肝肿瘤是生长在肝脏上或肝脏内的肿瘤。它们被分为良性和恶性肿瘤。肝细胞癌是肝脏最常见的恶性肿瘤。超声检查是医生对肝脏异常进行的第一道检查。检测肝脏肿瘤的唯一金标准是穿刺活检,但它是侵入性的,会导致该部位继发性感染和出血。本文提出了一种基于超声图像的无创肝肿瘤检测方法,并对肝脏肿瘤进行了分类。该方法分为分割、特征提取和分类三个阶段。第一阶段采用模糊C均值聚类算法对含有肿瘤的超声图像进行分割。第二阶段提取图像灰度共现矩阵特征,提取哈拉里克纹理特征;第三阶段是使用SVM对提取的特征进行训练,并对正常和异常图像进行分类。与支持向量机相结合的模糊C均值聚类优于其他分类器,灵敏度为98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hepatic tumor detection in ultrasound images
Hepatic tumors are tumors that grows on or in the liver. They are classified into benign and malignant tumors. Hepatocellular carcinoma is the most frequent malignant tumor in the liver. Ultrasound is the first line investigation carried out by the physician for any abnormalities in the liver. The only golden standard for detection of liver tumor is needle biopsy, but it is invasive and causes secondary infection and bleeding at that site. In this work we present a non invasive method for detection of hepatic tumors based on ultrasound images and classification is done to differentiate the tumors in the liver. The proposed method consist of three stages namely segmentation, feature extraction and classification. In the first stage the ultrasound image containing the tumor is segmented using Fuzzy C means clustering algorithm. In the second stage gray level co-occurrence matrix features are extracted from the segmented image and Haralick texture features are extracted. In the third stage consist of training the extracted features using SVM and classification is done for normal and abnormal image. The Fuzzy C means clustering combined with SVM outperforms the other classifiers with a sensitivity of 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信