单深度图像超分辨率通过高频子带增强和双边滤波

Chandra Shaker Balure, M. R. Kini, A. Bhavsar
{"title":"单深度图像超分辨率通过高频子带增强和双边滤波","authors":"Chandra Shaker Balure, M. R. Kini, A. Bhavsar","doi":"10.1109/ICIINFS.2016.8262996","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of super-resolution (SR) from a single low-resolution (LR) depth image to a high-resolution (HR) depth image. A simple yet effective method has been proposed using Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), and by utilizing the gradient information of the interpolated LR image. We propose an intermediate stage to enhance the high-frequency subbands to recover the HR image for both noiseless and noisy scenarios. The proposed method has been validated on Middlebury dataset for different upsampling factors (i.e. 2, 4, 8) and is shown to be superior when compared with some related DWT and SWT based SR methods. We also demonstrate encouraging performance of the approach on noisy depth images.","PeriodicalId":234609,"journal":{"name":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single depth image super-resolution via high-frequency subbands enhancement and bilateral filtering\",\"authors\":\"Chandra Shaker Balure, M. R. Kini, A. Bhavsar\",\"doi\":\"10.1109/ICIINFS.2016.8262996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of super-resolution (SR) from a single low-resolution (LR) depth image to a high-resolution (HR) depth image. A simple yet effective method has been proposed using Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), and by utilizing the gradient information of the interpolated LR image. We propose an intermediate stage to enhance the high-frequency subbands to recover the HR image for both noiseless and noisy scenarios. The proposed method has been validated on Middlebury dataset for different upsampling factors (i.e. 2, 4, 8) and is shown to be superior when compared with some related DWT and SWT based SR methods. We also demonstrate encouraging performance of the approach on noisy depth images.\",\"PeriodicalId\":234609,\"journal\":{\"name\":\"2016 11th International Conference on Industrial and Information Systems (ICIIS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th International Conference on Industrial and Information Systems (ICIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2016.8262996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2016.8262996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了从单幅低分辨率(LR)深度图像到高分辨率(HR)深度图像的超分辨率问题。利用离散小波变换(DWT)、平稳小波变换(SWT)和插值后LR图像的梯度信息,提出了一种简单有效的方法。我们提出了一个中间阶段来增强高频子带,以恢复无噪声和有噪声场景下的HR图像。所提出的方法已经在Middlebury数据集上进行了不同上采样因子(即2,4,8)的验证,与一些相关的基于DWT和SWT的SR方法相比,显示出优越性。我们还证明了该方法在噪声深度图像上的令人鼓舞的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single depth image super-resolution via high-frequency subbands enhancement and bilateral filtering
This paper addresses the problem of super-resolution (SR) from a single low-resolution (LR) depth image to a high-resolution (HR) depth image. A simple yet effective method has been proposed using Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), and by utilizing the gradient information of the interpolated LR image. We propose an intermediate stage to enhance the high-frequency subbands to recover the HR image for both noiseless and noisy scenarios. The proposed method has been validated on Middlebury dataset for different upsampling factors (i.e. 2, 4, 8) and is shown to be superior when compared with some related DWT and SWT based SR methods. We also demonstrate encouraging performance of the approach on noisy depth images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信