{"title":"单深度图像超分辨率通过高频子带增强和双边滤波","authors":"Chandra Shaker Balure, M. R. Kini, A. Bhavsar","doi":"10.1109/ICIINFS.2016.8262996","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of super-resolution (SR) from a single low-resolution (LR) depth image to a high-resolution (HR) depth image. A simple yet effective method has been proposed using Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), and by utilizing the gradient information of the interpolated LR image. We propose an intermediate stage to enhance the high-frequency subbands to recover the HR image for both noiseless and noisy scenarios. The proposed method has been validated on Middlebury dataset for different upsampling factors (i.e. 2, 4, 8) and is shown to be superior when compared with some related DWT and SWT based SR methods. We also demonstrate encouraging performance of the approach on noisy depth images.","PeriodicalId":234609,"journal":{"name":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single depth image super-resolution via high-frequency subbands enhancement and bilateral filtering\",\"authors\":\"Chandra Shaker Balure, M. R. Kini, A. Bhavsar\",\"doi\":\"10.1109/ICIINFS.2016.8262996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of super-resolution (SR) from a single low-resolution (LR) depth image to a high-resolution (HR) depth image. A simple yet effective method has been proposed using Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), and by utilizing the gradient information of the interpolated LR image. We propose an intermediate stage to enhance the high-frequency subbands to recover the HR image for both noiseless and noisy scenarios. The proposed method has been validated on Middlebury dataset for different upsampling factors (i.e. 2, 4, 8) and is shown to be superior when compared with some related DWT and SWT based SR methods. We also demonstrate encouraging performance of the approach on noisy depth images.\",\"PeriodicalId\":234609,\"journal\":{\"name\":\"2016 11th International Conference on Industrial and Information Systems (ICIIS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th International Conference on Industrial and Information Systems (ICIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2016.8262996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2016.8262996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single depth image super-resolution via high-frequency subbands enhancement and bilateral filtering
This paper addresses the problem of super-resolution (SR) from a single low-resolution (LR) depth image to a high-resolution (HR) depth image. A simple yet effective method has been proposed using Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), and by utilizing the gradient information of the interpolated LR image. We propose an intermediate stage to enhance the high-frequency subbands to recover the HR image for both noiseless and noisy scenarios. The proposed method has been validated on Middlebury dataset for different upsampling factors (i.e. 2, 4, 8) and is shown to be superior when compared with some related DWT and SWT based SR methods. We also demonstrate encouraging performance of the approach on noisy depth images.