{"title":"高q振荡器的仿真","authors":"M. Gourary, S. Ulyanov, M. Zharov, S. Rusakov","doi":"10.1145/288548.288601","DOIUrl":null,"url":null,"abstract":"We present a new technique, based on a continuation method, for oscillator analysis using harmonic balance. With the use of Krylov subspace iterative linear solvers, harmonic balance has become a very powerful method for the analysis of general nonlinear circuits in the frequency domain. However, application of the harmonic balance method to the oscillator problem has been difficult due to the very small region of convergence. The main contribution of the paper is a robust and efficient continuation method that overcomes this problem.","PeriodicalId":224802,"journal":{"name":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Simulation of high-Q oscillators\",\"authors\":\"M. Gourary, S. Ulyanov, M. Zharov, S. Rusakov\",\"doi\":\"10.1145/288548.288601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new technique, based on a continuation method, for oscillator analysis using harmonic balance. With the use of Krylov subspace iterative linear solvers, harmonic balance has become a very powerful method for the analysis of general nonlinear circuits in the frequency domain. However, application of the harmonic balance method to the oscillator problem has been difficult due to the very small region of convergence. The main contribution of the paper is a robust and efficient continuation method that overcomes this problem.\",\"PeriodicalId\":224802,\"journal\":{\"name\":\"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/288548.288601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/288548.288601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a new technique, based on a continuation method, for oscillator analysis using harmonic balance. With the use of Krylov subspace iterative linear solvers, harmonic balance has become a very powerful method for the analysis of general nonlinear circuits in the frequency domain. However, application of the harmonic balance method to the oscillator problem has been difficult due to the very small region of convergence. The main contribution of the paper is a robust and efficient continuation method that overcomes this problem.