基于加性状态分解控制框架下非仿射非线性非最小相位系统跟踪的强化学习

Lian Chen, Q. Quan
{"title":"基于加性状态分解控制框架下非仿射非线性非最小相位系统跟踪的强化学习","authors":"Lian Chen, Q. Quan","doi":"10.1109/DDCLS58216.2023.10166298","DOIUrl":null,"url":null,"abstract":"This paper proposes a reinforcement-learning additive-state-decomposition-based tracking controller for a class of non-affine nonlinear non-minimum phase systems. Because the tracking performance is not satisfied with the model-based additive-state-decomposition tracking control with an approximate ideal internal model, two reinforcement learning schemes are introduced to improve the performance under the proposed additive-state-decomposition-based control framework. One is used to generate control commands, and the other is used to generate tracking reference commands. Finally, numerical simulations show the effectiveness of the proposed controller.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning for Non-Affine Nonlinear Non-Minimum Phase System Tracking Under Additive-State-Decomposition-Based Control Framework\",\"authors\":\"Lian Chen, Q. Quan\",\"doi\":\"10.1109/DDCLS58216.2023.10166298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a reinforcement-learning additive-state-decomposition-based tracking controller for a class of non-affine nonlinear non-minimum phase systems. Because the tracking performance is not satisfied with the model-based additive-state-decomposition tracking control with an approximate ideal internal model, two reinforcement learning schemes are introduced to improve the performance under the proposed additive-state-decomposition-based control framework. One is used to generate control commands, and the other is used to generate tracking reference commands. Finally, numerical simulations show the effectiveness of the proposed controller.\",\"PeriodicalId\":415532,\"journal\":{\"name\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS58216.2023.10166298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对一类非仿射非线性非最小相位系统,提出了一种基于强化学习加性状态分解的跟踪控制器。针对具有近似理想内模型的基于模型的加性状态分解跟踪控制的跟踪性能不理想的问题,提出了两种强化学习方案来改善基于加性状态分解控制框架下的跟踪性能。一个用于生成控制命令,另一个用于生成跟踪参考命令。最后,通过数值仿真验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning for Non-Affine Nonlinear Non-Minimum Phase System Tracking Under Additive-State-Decomposition-Based Control Framework
This paper proposes a reinforcement-learning additive-state-decomposition-based tracking controller for a class of non-affine nonlinear non-minimum phase systems. Because the tracking performance is not satisfied with the model-based additive-state-decomposition tracking control with an approximate ideal internal model, two reinforcement learning schemes are introduced to improve the performance under the proposed additive-state-decomposition-based control framework. One is used to generate control commands, and the other is used to generate tracking reference commands. Finally, numerical simulations show the effectiveness of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信