用回归方法研究I-V曲线

A. Y. Antonov, M. I. Varayun'
{"title":"用回归方法研究I-V曲线","authors":"A. Y. Antonov, M. I. Varayun'","doi":"10.1109/BALD.2016.7886533","DOIUrl":null,"url":null,"abstract":"Currently, field electron emission is an indispensable tool for studying advanced materials. Analysis of the current-voltage (I–V ) dependences allows us to derive information about some characteristics of the field-emission cathode (i.e., work function or field enhancement factor values). It is known that in the Fowler—Nordheim coordinates I–V curve is linear. A linear approximation can be constructed with the method of ordinary least squares (OLS). OLS is one of the basic methods of regression analysis used to estimate unknown parameters of regression models. However, reliable confidence intervals for the regression coefficients can only be easily obtained if the model residuals are normally distributed. This is impossible to assume about the log-transformed I–V curve. The scope of this paper is modeling of I–V dependence. The random errors of I measurements are normally distributed. We have constructed estimations of the coefficients in Fowler— Nordheim law (i.e. A and B) using methods of linear and nonlinear regression and shown that those approaches give different results. Errors of determining of the coefficients A and B are presented.","PeriodicalId":328869,"journal":{"name":"2016 14th International Baltic Conference on Atomic Layer Deposition (BALD)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"I–V curve investigation with regression methods\",\"authors\":\"A. Y. Antonov, M. I. Varayun'\",\"doi\":\"10.1109/BALD.2016.7886533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, field electron emission is an indispensable tool for studying advanced materials. Analysis of the current-voltage (I–V ) dependences allows us to derive information about some characteristics of the field-emission cathode (i.e., work function or field enhancement factor values). It is known that in the Fowler—Nordheim coordinates I–V curve is linear. A linear approximation can be constructed with the method of ordinary least squares (OLS). OLS is one of the basic methods of regression analysis used to estimate unknown parameters of regression models. However, reliable confidence intervals for the regression coefficients can only be easily obtained if the model residuals are normally distributed. This is impossible to assume about the log-transformed I–V curve. The scope of this paper is modeling of I–V dependence. The random errors of I measurements are normally distributed. We have constructed estimations of the coefficients in Fowler— Nordheim law (i.e. A and B) using methods of linear and nonlinear regression and shown that those approaches give different results. Errors of determining of the coefficients A and B are presented.\",\"PeriodicalId\":328869,\"journal\":{\"name\":\"2016 14th International Baltic Conference on Atomic Layer Deposition (BALD)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Baltic Conference on Atomic Layer Deposition (BALD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BALD.2016.7886533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Baltic Conference on Atomic Layer Deposition (BALD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BALD.2016.7886533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,场电子发射是研究先进材料不可缺少的工具。对电流-电压(I-V)依赖性的分析使我们能够得出场发射阴极的某些特性(即功函数或场增强因子值)的信息。已知在Fowler-Nordheim坐标系中,I-V曲线是线性的。用普通最小二乘法(OLS)可以构造线性近似。OLS是回归分析的基本方法之一,用于估计回归模型的未知参数。然而,回归系数的可靠置信区间只有在模型残差为正态分布的情况下才容易获得。对于对数变换后的I-V曲线是不可能假设的。本文的研究范围是I-V依赖性的建模。I测量的随机误差是正态分布的。我们用线性和非线性回归的方法构造了Fowler - Nordheim定律(即A和B)中系数的估计,并表明这些方法给出了不同的结果。给出了确定系数A和系数B的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
I–V curve investigation with regression methods
Currently, field electron emission is an indispensable tool for studying advanced materials. Analysis of the current-voltage (I–V ) dependences allows us to derive information about some characteristics of the field-emission cathode (i.e., work function or field enhancement factor values). It is known that in the Fowler—Nordheim coordinates I–V curve is linear. A linear approximation can be constructed with the method of ordinary least squares (OLS). OLS is one of the basic methods of regression analysis used to estimate unknown parameters of regression models. However, reliable confidence intervals for the regression coefficients can only be easily obtained if the model residuals are normally distributed. This is impossible to assume about the log-transformed I–V curve. The scope of this paper is modeling of I–V dependence. The random errors of I measurements are normally distributed. We have constructed estimations of the coefficients in Fowler— Nordheim law (i.e. A and B) using methods of linear and nonlinear regression and shown that those approaches give different results. Errors of determining of the coefficients A and B are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信