通过自动约束提取生成面向覆盖率的测试

O. Guzey, Li-C. Wang
{"title":"通过自动约束提取生成面向覆盖率的测试","authors":"O. Guzey, Li-C. Wang","doi":"10.1109/HLDVT.2007.4392805","DOIUrl":null,"url":null,"abstract":"Generating tests to achieve high coverage in simulation-based functional verification can be very challenging. Constrained-random and coverage-directed test generation methods have been proposed and shown with various degrees of success. In this paper, we propose a new tool built on top of an existing constrained random test generation framework. The goal of this tool is to extract constraints from simulation data for improving controllability of internal signals. We present two automatic constraint extraction algorithms. Extracted constraints can be put back into constrained test-bench to generate tests for simultaneously controlling multiple signals. We demonstrate the effectiveness and scalability of the constraint extraction tool based on experiments on OpenSparc T1 microprocessor.","PeriodicalId":339324,"journal":{"name":"2007 IEEE International High Level Design Validation and Test Workshop","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Coverage-directed test generation through automatic constraint extraction\",\"authors\":\"O. Guzey, Li-C. Wang\",\"doi\":\"10.1109/HLDVT.2007.4392805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating tests to achieve high coverage in simulation-based functional verification can be very challenging. Constrained-random and coverage-directed test generation methods have been proposed and shown with various degrees of success. In this paper, we propose a new tool built on top of an existing constrained random test generation framework. The goal of this tool is to extract constraints from simulation data for improving controllability of internal signals. We present two automatic constraint extraction algorithms. Extracted constraints can be put back into constrained test-bench to generate tests for simultaneously controlling multiple signals. We demonstrate the effectiveness and scalability of the constraint extraction tool based on experiments on OpenSparc T1 microprocessor.\",\"PeriodicalId\":339324,\"journal\":{\"name\":\"2007 IEEE International High Level Design Validation and Test Workshop\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International High Level Design Validation and Test Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HLDVT.2007.4392805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International High Level Design Validation and Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2007.4392805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

生成测试以在基于模拟的功能验证中实现高覆盖率是非常具有挑战性的。约束随机和覆盖导向测试生成方法已被提出并取得了不同程度的成功。在本文中,我们提出了一个建立在现有约束随机测试生成框架之上的新工具。该工具的目标是从仿真数据中提取约束,以提高内部信号的可控性。提出了两种自动约束提取算法。提取的约束可以放回约束试验台,生成同时控制多个信号的测试。通过在OpenSparc T1微处理器上的实验,验证了约束提取工具的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coverage-directed test generation through automatic constraint extraction
Generating tests to achieve high coverage in simulation-based functional verification can be very challenging. Constrained-random and coverage-directed test generation methods have been proposed and shown with various degrees of success. In this paper, we propose a new tool built on top of an existing constrained random test generation framework. The goal of this tool is to extract constraints from simulation data for improving controllability of internal signals. We present two automatic constraint extraction algorithms. Extracted constraints can be put back into constrained test-bench to generate tests for simultaneously controlling multiple signals. We demonstrate the effectiveness and scalability of the constraint extraction tool based on experiments on OpenSparc T1 microprocessor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信