Salih Akyürekli, Tugba Çorlu, İ. KARADUMAN ER, S. Acar
{"title":"热水参数对silar沉积ZnO样品结构和光学性能的影响","authors":"Salih Akyürekli, Tugba Çorlu, İ. KARADUMAN ER, S. Acar","doi":"10.54287/gujsa.1180316","DOIUrl":null,"url":null,"abstract":"In this study, ZnO thin films were grown by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The SILAR method is a chemical solution-based method consisting of 4 steps: solution, hot water, air and deionized water. Our main goal is to examine the changes in SILAR method production by changing the hot water parameter from these steps. It is widely known that chemical synthesis methods and their relative parameters have a crucial effect on the size of the produced thin films, surface area/volume ratio, porosity as well as defects in the film which in turn affect the morphology. All parameters were kept the same and changes were made in the hot water step, in addition to the classic 90°C hot water step, constant temperature ultrasonic cleaner at 40 ºC, an ultrasonic cleaner at room temperature, and an ultrasonic breaker at room temperature are used instead of the hot water step. For this purpose, alternative devices such as ultrasonic cleaner and ultrasonic breaker were used to break the unwanted weak bonds at lower temperatures during production. The structural, morphological, optical and electrical properties were characterized and the results were investigated in detail.","PeriodicalId":134301,"journal":{"name":"Gazi University Journal of Science Part A: Engineering and Innovation","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the Hot Water Parameter on the Structural and Optical Properties of SILAR-Deposited ZnO Samples\",\"authors\":\"Salih Akyürekli, Tugba Çorlu, İ. KARADUMAN ER, S. Acar\",\"doi\":\"10.54287/gujsa.1180316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, ZnO thin films were grown by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The SILAR method is a chemical solution-based method consisting of 4 steps: solution, hot water, air and deionized water. Our main goal is to examine the changes in SILAR method production by changing the hot water parameter from these steps. It is widely known that chemical synthesis methods and their relative parameters have a crucial effect on the size of the produced thin films, surface area/volume ratio, porosity as well as defects in the film which in turn affect the morphology. All parameters were kept the same and changes were made in the hot water step, in addition to the classic 90°C hot water step, constant temperature ultrasonic cleaner at 40 ºC, an ultrasonic cleaner at room temperature, and an ultrasonic breaker at room temperature are used instead of the hot water step. For this purpose, alternative devices such as ultrasonic cleaner and ultrasonic breaker were used to break the unwanted weak bonds at lower temperatures during production. The structural, morphological, optical and electrical properties were characterized and the results were investigated in detail.\",\"PeriodicalId\":134301,\"journal\":{\"name\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54287/gujsa.1180316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gazi University Journal of Science Part A: Engineering and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54287/gujsa.1180316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of the Hot Water Parameter on the Structural and Optical Properties of SILAR-Deposited ZnO Samples
In this study, ZnO thin films were grown by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The SILAR method is a chemical solution-based method consisting of 4 steps: solution, hot water, air and deionized water. Our main goal is to examine the changes in SILAR method production by changing the hot water parameter from these steps. It is widely known that chemical synthesis methods and their relative parameters have a crucial effect on the size of the produced thin films, surface area/volume ratio, porosity as well as defects in the film which in turn affect the morphology. All parameters were kept the same and changes were made in the hot water step, in addition to the classic 90°C hot water step, constant temperature ultrasonic cleaner at 40 ºC, an ultrasonic cleaner at room temperature, and an ultrasonic breaker at room temperature are used instead of the hot water step. For this purpose, alternative devices such as ultrasonic cleaner and ultrasonic breaker were used to break the unwanted weak bonds at lower temperatures during production. The structural, morphological, optical and electrical properties were characterized and the results were investigated in detail.