Antonio Artés, F. Duarte, M. Ashouei, J. Huisken, J. Ayala, David Atienza Alonso, F. Catthoor
{"title":"[2010]基于循环缓冲的指令存储器组织的能源效率研究","authors":"Antonio Artés, F. Duarte, M. Ashouei, J. Huisken, J. Ayala, David Atienza Alonso, F. Catthoor","doi":"10.1109/IWIA.2010.10","DOIUrl":null,"url":null,"abstract":"Energy consumption in embedded systems is strongly dominated by instruction memory organizations. Based on this, any architectural enhancement introduced in this component will produce a significant reduction of the total energy bud-get of the system. Loop buffering is an effective scheme to reduce the energy consumption of the instruction memory organization.In this paper, a novel classification of architectural enhancements based on the use of loop buffer concept is presented. Using this classification, an energy design space exploration is performed to show the impact in the energy consumption on different application scenarios. From gate-level simulations, the energy analysis demonstrates that the instruction level parallelism of the system brings not only improvements in performance, but also improvements in the energy consumption of the system.The increase in instruction level parallelism makes easy the adaptation of the sizes of the loop buffers to the sizes of the loops that form the application, because gives more freedom to combine the execution of the loops that form the application.","PeriodicalId":339844,"journal":{"name":"2010 International Workshop on Innovative Architecture for Future Generation High Performance","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"[2010] Energy Efficiency Using Loop Buffer based Instruction Memory Organizations\",\"authors\":\"Antonio Artés, F. Duarte, M. Ashouei, J. Huisken, J. Ayala, David Atienza Alonso, F. Catthoor\",\"doi\":\"10.1109/IWIA.2010.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy consumption in embedded systems is strongly dominated by instruction memory organizations. Based on this, any architectural enhancement introduced in this component will produce a significant reduction of the total energy bud-get of the system. Loop buffering is an effective scheme to reduce the energy consumption of the instruction memory organization.In this paper, a novel classification of architectural enhancements based on the use of loop buffer concept is presented. Using this classification, an energy design space exploration is performed to show the impact in the energy consumption on different application scenarios. From gate-level simulations, the energy analysis demonstrates that the instruction level parallelism of the system brings not only improvements in performance, but also improvements in the energy consumption of the system.The increase in instruction level parallelism makes easy the adaptation of the sizes of the loop buffers to the sizes of the loops that form the application, because gives more freedom to combine the execution of the loops that form the application.\",\"PeriodicalId\":339844,\"journal\":{\"name\":\"2010 International Workshop on Innovative Architecture for Future Generation High Performance\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Workshop on Innovative Architecture for Future Generation High Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWIA.2010.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Innovative Architecture for Future Generation High Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWIA.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[2010] Energy Efficiency Using Loop Buffer based Instruction Memory Organizations
Energy consumption in embedded systems is strongly dominated by instruction memory organizations. Based on this, any architectural enhancement introduced in this component will produce a significant reduction of the total energy bud-get of the system. Loop buffering is an effective scheme to reduce the energy consumption of the instruction memory organization.In this paper, a novel classification of architectural enhancements based on the use of loop buffer concept is presented. Using this classification, an energy design space exploration is performed to show the impact in the energy consumption on different application scenarios. From gate-level simulations, the energy analysis demonstrates that the instruction level parallelism of the system brings not only improvements in performance, but also improvements in the energy consumption of the system.The increase in instruction level parallelism makes easy the adaptation of the sizes of the loop buffers to the sizes of the loops that form the application, because gives more freedom to combine the execution of the loops that form the application.